
CHAP 8_Notebook N3 Multi-layer Perceptron for 
regression

1. Using 'tanh' and 'lbfgs' as parameters :

1. It is quite interesting to observe the case where a single hidden layer is used; 
for the activation function ‘tanh’, one observes the follong regression result : 
One clearly recognizes the tanh function (up to the sign): As expected, the 
learner serches to fit the sine data by choosing parameters a,b,c and d such that 
the MSE between the data and c.tanh(ax+b) +d is minimum.  

For a single layer including 2 or 3 neurons, the result does not always lead to a « correct 
result » : 2 examples of obtained solutions are given below :



For 4 or more neurons in the single hidden layer, one gets similar good results, as can be 
confirmed by the MSE as a function of N_neurons…

2. For a single hidden Layer counting N_neurons :
First consider the input layer and its connections to the hidden layer :

from entry x to each neuron = N_Neurons coeff
from bias (+1) to each neuron = N_Neurons coeff

Then ftom the hidden layer to the output layer : 25 coeff + 1 from bias = 26. 
finaly, this is a total number of coeff that is 3*N_neurons+1. 

3. Replacing ‘tanh’ by rely in the activation function, and running the code for e.g. 
N_neurons=4, the « best » results found look like 



and below is an example of what we obtain for lbfgs solver (Newon like) and 
N_neurons=100 : 



one clearly recognizes the « edges » of the relu function (remind that here, a single hidden 
layer is used, and the output layer is the identity). 
Replacing the activation by « identity », the system remains always linear and is unable to fit 
the sine function. 

2. Using « sgd », and « tanh »
for the single hidden layer case, N-Neurons = 10 , step =.01 : 

whereas for step=.0001 (i.e. 100 times many more samples), we get a better regression ,at the 
cost of 100 times more calculations in this case : 



For relu activation, the result is much worse, even for N_Neurons =10. Basically, relu 
activation requires more points for the learning process, and fitting smooth function will 
necessarily require many hidden layers to approximate with successives locally  constant 
slope l approximation. 

Seting the parameters ro « relu » and 2 hidden layers of size 25 : 



In that case 
from input to hidden layer 1 = 2*N_neurons coeffs (2 becasue x (scalar) + bias)
from hidden layer 1 to hidden layer 2 : (N_neurons + 1 (bias))*N_neurons 
from hidden layer 2 to output layer : N_neurons+1 
total nuùber of coeffs : 2N+N^2+N+N+1 = N_neurons^2 + 4N_neurons+1
rq for N-neuorns=25, this equals 726!  if step is kept to be .01, only 629 data are used… 

‘sgd’ corresponds to perform a random walk whith a n average decay towards the local 
minimum. The number of steps to perform will be large. « relu » approximates the data with 
curves that are made of 2 slopes (one of derivative =0, and the other one with 
derivative=1*coeff) : approximating a smooth function with such a « rough » activation 
function will require to have many neurons, and many layers to allow approximations by 
higher order localy polynomial curves.
To summarize, this increased complexity induces also to use many more samples for solving 
the optimization problem. 


