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Perceptron

Motivation
- Build a Bio-inspired parametric model, with possibly high complexity.

Rosenblatt’s perceptron, 1957

I Neural like structure, with a single unit

I n inputs

wj
def
= weight, or connecting weight

Let g(.) be the activation function, and x = [x1, . . . , xn] the input :

y = g(a(x))

a(x) =
n∑

j=1

wjxx
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Perceptron

Remarks

I

-for a (linear) classification problem, g(a) is a threshold (or sigmoidal) function
for a (linear) regression problem, g(a) = a

I for binary classification,

g(a) =

{
−1 if a ≤ 0
1 if a > 1

I It is often convenient to introduce a bias to account for possible affine separating

hyperplane :
[x1, . . . xn]← [1, x1, . . . , xn] = x
[w1, . . . ,wn]← [w0,w1, . . . ,wn] = w

I In order to predict the probability of x to be in a given class :

g(a(x)) =
1

1 + ea(x))

See 8 NN Perceptron MLP/N1 Perceptron.ipynb
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Perceptron

Training the perceptron

As for other ML approaches, minimize the empirical risk, i.e. an averaged cost
function.

Online learning

The weights (parameters) w0, . . . ,wn are updated to minimize the risk L(f (x i ), y i )
each time that a new pair (x i , y i ) is received, as opposed to batch learning. Gradient
descent algorithm minimization :

wj ← wj − ν
∂L(f (x i ), y i )

∂wj

I ν is the learning rate. In practice, ν is often decreased when the risk is close to
the minimum.

I if ν is too large : possible instability
I if ν is too small : slow convergence

I Many epochs may be performed on the whole training set.
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Perceptron

historical example : binary classifier

I y i ∈ {−1,+1}∀i ∈ [1,N]

I L(f (x i , y i ) = max(0,−y ia(x i )) =
max(0,−y iwT x i )
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Hinge loss

⇒ wj ←
{

wj if y iwT x i > 0
wj − νy iwT x i if y iwT x i ≤ 0

Albert Novikov theorem, 1962

Let T = {(x i , y i ), i = 1 . . . ,N} be the training set. Let D, γ ∈ R+∗, then
IF
• ∀x i ∈ T , ||x i ||2 < D (← bounded support)

• ∃u ∈ Rn+1/ ||u||2 = 1and ∀(x i , y i ) ∈ T , y iuT x i ≥ γ(← margin condition)

THEN the perceptron algorithm converges in less than
(

D
γ

)2
iterations.

See Perceptron sonar example.ipynb(part I on logical example)
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Multilayer perceptrons, Neural Nets

Motivation
Allow to deal with non linear frontiers between classes by inserting hidden layers,
within a FEED FORWARD network.
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Multilayer perceptrons, Neural Nets

Notations

wk
ij : weight for node j in layer lk for incoming node i

bki : bias for node i in layer lk
aki : product sum plus bias (activation) for node i in layer lk
ok
i : output for node i in layer lk

rk : number of nodes in layer lk
g : activation function for the hidden layer nodes
go : activation function for the output layer nodes

Then

akj = bkj +
∑rk−1

i=1 wk
ij o

k−1
i =

∑rk−1

i=0 wk
ij o

k−1
i

ok
j = g(akj ) = g(

∑rk−1

i=0 wk
ij o

k−1
i )
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Gradient backpropagation algorithm

Gradient backpropagation algorithm

Backpropagation attempts to minimize the empirical risk (or loss)

L(X , θ) =
1

N

∑
i

L(f (x i ), y i )

with respect to the neural network’s weights (gathered in θ) :
→ for each weight wk

ij , evaluate ∂L
∂wk

ij

. By decomposing into a sum over individual error

terms for each individual input-output pair

∂L(X , θ)

∂wk
ij

=
1

N

N∑
d=1

∂L(f (xd ), yd )

∂wk
ij

=
1

N

N∑
d=1

∂Ld

∂wk
ij

.
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Gradient backpropagation algorithm

Loss function derivatives (index d is omitted hereafter

Remind the expression of output at node Nj :

ok
j = g(akj ) = g(

rk−1∑
i=0

wk
ij o

k−1
i )

L depends on wk
ij trough akj : Apply the chain rule to the loss function partial derivative

∂L

∂wk
ij

=
∂L

∂akj

∂akj

∂wk
ij

δkj
def
= ∂L

∂akj
∂akj

∂wk
ij

= ∂
∂wk

ij

(∑rk−1

l=0 wk
lj o

k−1
l

)
= ok−1

i

⇒
∂L

∂wk
ij

= δkj o
k−1
i .
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Gradient backpropagation algorithm

Output Layer (MLP with m + 1 layers)

Assume a one-output neural network, so there is only one output node j = 1).
Expressing L in terms of the value am1

(
since δm1 is a partial derivative with respect to

am1
)

gives

L(f (x), y) = L
(
go(am1 ), y

)
where go(x) is the activation function for the output layer.
thus,

δm1 = L′ (g0(am1 ), y) g ′o(am1 )

and finaly
∂L

∂wm
i1

= δm1 om−1
i = L′ (g0(am1 ), y) g ′o(am1 ) om−1

i .
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Gradient backpropagation algorithm

Backpropagation for hidden layers -cont’d- :

One has for the error term δkj in layer 1 ≤ k < m :

δ
k
j =

∂L

∂akj
=

rk+1∑
l=1

∂L

∂ak+1
l

∂ak+1
l

∂akj
,

where l ranges from 1 to rk+1

(The bias input ok
0 corresponds to wk+1

0j is fixed, does not depend on the outputs of previous

layers, thus l does not take on the value 0.)
Plugging in the error term :

δ
k
j =

rk+1∑
l=1

δ
k+1
l

∂ak+1
l

∂akj
.

From the definition of ak+1
l

ak+1
l =

rk∑
j=1

wk+1
jl g

(
akj
)
,

where g(x) is the activation function for the hidden layers,

∂ak+1
l

∂akj
= wk+1

jl g ′
(
akj
)
.
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Gradient backpropagation algorithm

Backpropagation -cont’d- :

Plugging this into the latter equation yields a final equation for the error term δkj in
the hidden layers, called the backpropagation formula :

δkj =
rk+1∑
l=1

δk+1
l wk+1

jl g ′
(
akj
)

= g ′
(
akj
) rk+1∑

l=1

wk+1
jl δk+1

l .

And putting all equations together :

∂L

∂wk
ij

= δkj o
k−1
i = g ′

(
akj
)
ok−1
i

rk+1∑
l=1

wk+1
jl δk+1

l .

⇒ gradient values for updating weights at layer k are computed from the gradient
∂Ld
∂ak+1

l

used for updating layer k + 1

Computation principle

For each pair (x id , y
i
d ), compute the output of each neuron by going forward long the

network. Then , during a of back propagation of the errors, update all the weights
going from the last hidden layer toward the first one.
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Gradient backpropagation algorithm

BACKPROPAGATION ALGO, Main equations
For the partial derivatives,

∂Ld

∂wk
ij

= δkj o
k−1
i

where, for the final layer’s error term,

δm1 = g ′o(am1 )L′(f (xd ), yd )

where, for the hidden layers’ error terms,

δkj = g ′
(
akj
) rk+1∑

l=1

wk+1
jl δk+1

l .

For combining the partial derivatives for each input-output pair,

∂L(X , θ)

∂wk
ij

=
1

N

N∑
d=1

∂Ld

∂wk
ij

.

For updating the weights,

∆wk
ij = −ν

∂L(X , θ)

∂wk
ij

.

13/ 25



Neural Networks, Perceptron, MLP, Back propagation principle

Gradient backpropagation algorithm

Backpropagation algorithm summary

1) Calculate the forward phase for each (xd , yd ) ; store the results ŷd , akj , and ok
j for

each node j in layer k by proceeding from layer 0, to layer m, the output layer.

2) Calculate the backward phase for each (xd , yd ) ; store ∂Ld
∂wk

ij

for each weight wk
ij .

Proceed from output layer m, to layer 1, the input layer.
a) Evaluate δm1
b) Backpropagate the error terms for the hidden layers δkj , working

backwards
c) Evaluate the partial derivatives of the individual error Ld with respect

to wk
ij

3) Combine the individual gradients for each input-output pair to get the total
gradient for the entire set X =

{
(x1, y1), . . . , (xN , yN)

}
(a simple average of the

individual gradients).

4) Update the weights according to the learning rate α and total gradient ∂L(X ,θ)

∂wk
ij
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Gradient backpropagation algorithm

Remarks

In the classic formulation,
for hidden nodes

(
g(x) = σ(x)

)
(sigmoidal function)

and the output activation function is
(
go(x) = x

)
g ′(x) =

∂σ(x)

∂x
= σ(x)

(
1− σ(x)

)
.

g ′o(x) =
∂go(x)

∂x
=
∂x

∂x
= 1.

→ No need to remember the activation values am1 and akj in addition to the output

values om
1 and ok

j , greatly reducing the memory footprint of the algorithm.

BUT gradient descent algorithm may be infeasible when the training data size is huge.
Thus, a stochastic version of the algorithm is often used instead.
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Gradient backpropagation algorithm

Remarks -cont’d-

• Empirical risk minimization for multilayer perceptron is an ill-posed and
ill-conditioned NON CONVEX problem.

• Gradient values in the first hidden layers often takes either too large (explosion) or
too low values (vanishing gradient, leading to slow down learning convergence).

• Weights initialization values, learning rate, choice of g(), m, rm do all influence the
result ! first results date back to Hinton, 2006

• To avoid saturation effects of node outputs (either to 0 or to 1), l2 regularization of
L(f (x), y) may beapplied on θ.
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Stochastic Gradient method

Stochastic Gradient method

At each iteration, rather than computing

∇θL(X) = ∇θ(
N∑

d=1

L(xd )) =
N∑

d=1

∇θL(xd )

stochastic gradient descent randomly samples d at uniform and computes ∇θL(xd )
instead :
SGD uses ∇L(xd ) as an unbiased estimator of ∇L(X) ;

E [∇θL(xd )] = E

[
1

k

k∑
i=1

∇L(xk )

]
= ∇L(X).

In a generalized case, at each iteration a mini-batch B that consists of indices for
training data instances may be sampled at uniform with replacement.

∇LB(X) =
1

|B|
∑
d∈B
∇L(xd )

update θ as
θ := θ − η∇LB(X)
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Stochastic Gradient method

I The per-iteration computational cost is O(|B|). Thus, when the mini-batch size is small, the
computational cost at each iteration is light.

I If the training data set has many redundant data instances, stochastic gradients may be so
close to the true gradient ∇θL(X) that a small number of iterations will find useful solutions
to the optimization problem.

I Stochastic gradient descent can be considered as offering a regularization effect especially
when the mini-batch size is small due to the randomness and noise in the mini-batch
sampling.

I Certain hardware processes mini-batches of specific sizes more efficiently.

See 8 NN Perceptron MLP/N1 Perceptron.ipynb (part II)
See 8 NN Perceptron MLP/N2 MLPClassifier.ipynb
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Stochastic Gradient method
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AutoEncoder

AutoEncoder
Images for this section were adapted from https ://www.jeremyjordan.me/autoencoders/

• Autoencoders are Unsupervised Neural Networks, designed for Representation
learning and/or dimension reduction.

• main idea : impose a bottleneck in the network to compressed knowledge
representation of the input.

rk : This assumes that the data are struc-
tured (input features are correlated) as for
e.g. iid data, such compression will be very
difficult if not impossible without loosing
much information.
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AutoEncoder

AutoEncoder principle

⇒ Formulate the problem as a supervised lear-
ning problem whose output is {x i}

⇒ The empirical risk to minimize is thus
L(f (x), x) : the bottleneck plays a key role (other-
wise the network simply passes the values to the
output.

⇒ if linear activation function were used, that
would perform PCA like dimension reduction

The AutoEncoder must be :

I sensitive enough to the inputs, to built an accurate reconstruction

I insensitive enough to the inputs to avoid overfitting

This requires to regularize the loss function of the form

L(f (x), x) + regularization
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AutoEncoder

UnderComplete AE

Limit of the flow of information going through the NN by limiting the nb of nodes in
the hidden layers :

No explicit regularization term is required here.
If too many nodes, i.e. high capacity -in the sense of Vapnik-, the AE may be capable
of learning a way to simply memorize the data. The primary aim to discover latent
variable cannot be attained !
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AutoEncoder

Sparse AE

Idea is to keep the number of nodes in hidden layers quite large, but regularize the
loss function by penalizing activations within a layer (6= weights regularisation) ⇒ only
a small nb of neurons are activated.

l1 regularization

For layer k :

(f (x), x) + λ

rk∑
j=1

|ok
j |

Remind that in the notation of the previous section, activation of a neuron was noted
ok
j = g(akj ). Activations are in [0, 1] or [−1, 1], depending on the choice of g(). Below,

we assume ok
j ∈ [0, 1].
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AutoEncoder

Sparse AE - cont’d-

Kullback-Leibler regularization

Let ρ̂kj
def
= 1

n

∑n
i=1 o

k
j (x) be the average activation of neuron i in layer k, estimated

over a collection of n samples {x i , i = 1 . . . n}.

L(f (x), x) + λ
m∑

k=1

rk∑
j=1

KL(Bρ||Bρ̂kj )

where Bρ is the Bernoulli process of parameter ρ, thus

KL(Bρ||Bρ̂kj ) = ρ log
ρ

ρ̂jk
+ (1− ρ) log

1− ρ
1− ρ̂jk

⇒ ρ acts as a ”sparsity parameter” ; small
values of ρ correspond to low probability
for the neuron to fire.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

i
k

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

K
L 

in
 b

its

KL(B.15 || B
j
k)

24/ 25



Neural Networks, Perceptron, MLP, Back propagation principle

AutoEncoder

AE for denoising : principle

Alternate approach for denoising

Force the activation of the hidden layer to be weakly sensitive to small deviations of
the inputs

L(f (x), x) + λ
m∑

k=1

rk∑
j=1

||∇xo
k
j (x)||2
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