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Linear models: regression and logistic regression

Introduction

Linear model: Keep it simple!

Simple linear approach may seem overly simplistic

- true prediction functions are never linear

+ extremly useful, both conceptually and practically

Practically

Gorge Box, 60’: “Essentially, all models are wrong, but some are very useful”

+ Simple is actually very good: works very well in a lot of situations by capturing the main effects
(which are generally the most interesting)

Conceptually

Many concepts developped for the linear problem are important for a lot of the supervised learning
techniques

+ Although it is nerver correct, a linear model serves as a good and interpretable approximation of
the unknown true function f (X )
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Introduction

Model based approaches

Reminder on Supervised Learning

I input data X ∈ Rp

I reponse Y to be predicted

I training set (X1,Y1), . . . , (Xn,Yn)

In a model based approach, we seek an explicit relation between the (input) data X and the response Y
We focus here on Discriminative models, where we just model explicitly the conditional distribution
P(Y |X ) rather than the joint dictribution P(X ,Y )

Discriminative models
Direct learning of P(Y |X ), e.g.

I Linear regression

I Logistic regression (← generalized linear model for classification tasks)

I ...
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Linear regression

Outline

Linear regression

Stochastic Gradient Descent

Logistic regression
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Linear regression

Linear Regression Problem

I Xi = (Xi,1, . . . ,Xi,p)T ∈ Rp,

I Yi ∈ R,
for i = 1, . . . , n (sized n training set)

Linear Regression Model

Yi = β0 +

p∑
j=1

βjXi,j + σεi , for i = 1, . . . , n,

I εi is a centered with unit variance (E [εi ] = 0, var (εi ) = 1) white noise

I β0 is the “intercept” (reduces to the ordinate at the origin when p = 1)

I β ≡ (β0, . . . , βp) ∈ Rp+1 is the coefficient vector

Objective: estimation of β using the samples in the training set ← supervised learning problem
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Linear regression

Linear Regression Problem (Cont’d)

Linear Regression Model

Yi = β0 +

p∑
j=1

βjXi,j + σεi , for i = 1, . . . , n,

Remark: model linear w.r.t. β ≡ (β0, . . . , βp) ∈ Rp+1 , but not necessarily linear w.r.t.

I the inputs Xi : we can add non linear predictors h(X1, . . . ,Xp) in the model, e.g. X 2
i , XiXj ...

I the outputs Yi : we can introduce a non linear link function ← generalized linear model, e.g.
logistic regression
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Linear regression

Least Squares (LS) Estimator

Linear least squares fitting with X ∈ R2

LS estimate defined by minimizing the Residual Sum of
Squares (RSS)

β̂ = arg min
β

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxi,j

)2

︸ ︷︷ ︸
RSS(β)

I RSS(β) ∝ training error rate for quadratic loss
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Linear regression

Least Squares Estimator (Cont’d)

β̂ = arg min
β

RSS(β), where RSS(β) =
n∑

i=1

(
yi − β0 −

p∑
j=1

βjxi,j

)2

Matrix expression of RSS

RSS(β) = ||Y − Xβ||22,

where Y =

y1
...

yn

 ∈ Rn, X =

1 x1,1 . . . x1,p
...

...
...

1 xn,1 . . . xn,p

 ∈ Rn×(p+1)
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Linear regression

LS Estimator derivation

Ŷ = X β̂ is the prediction in the space spanned by the column vectors of X such that the euclidean
error norm ||Y − X β̂||2 is minimized

Orthogonality principle

Let X j be the jth column of X

β
^

XY=
^

β
^

XY−

Y

,X
1 2 p+1
,X  , ...X( )span

for j = 1, . . . , p + 1

〈X j ,Y − X β̂〉 = (X j)T
(

Y − X β̂
)

= 0,

⇔ XT
(

Y − X β̂
)

= 0,

⇔
(

XTX
)
β̂ = XTY

Rk: This condition can also be derived by setting the gradient of RSS(β) = (Y −Xβ)T (Y −Xβ) to 0.
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Linear regression

LS Estimator computation

Assumption: rank X = p + 1, hence XTX is invertible

Analytical expression

Because
(
XTX

)
β̂ = XTY ,

β̂=
(

XTX
)−1

XTY ,

Notebook N1 polynomial regression.ipynb

Numerical computation in high dimension

Pb: When p > 103 or p > 104, too expansive to compute
(
XTX

)−1
...

+ more efficient to use a numerical procedure to minimize the RSS, e.g. steepest descent
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Stochastic Gradient Descent
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Stochastic Gradient Descent

Steepest descent, aka gradient descent

We can define the criterion to be minimized as J(β) ≡ 1
2
RSS(β)

Steepest descent

Ubiquitous iterative procedure based on the observation that
J(w) decreases fastest if one goes from w in the direction of
the negative gradient of J(·) at w, i.e. −∇J(w). Here one
iteration consists in

βk+1 = βk − αk∇β J(βk),

where
I αk ∈ R is the learning rate

I ∇β J(β) = XTXβ − XTY is the batch gradient
(computed over the whole training set)
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Stochastic Gradient Descent

Steepest descent, aka gradient descent

Supplementary materials

Coursera MOOC short (11mn) and educational video https:

//www.coursera.org/lecture/machine-learning/gradient-descent-intuition-GFFPB

Wikipedia page https://en.wikipedia.org/wiki/Gradient_descent

Scikit-learn documentation (with description of learning rate strategies)
https://scikit-learn.org/stable/modules/sgd.html#mathematical-formulation
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Stochastic Gradient Descent

Stochastic Gradient Descent (SGD)

Remember: batch gradient ∇β J(β) = XTXβ − XTY

Pb: For large and high-dimensional datasets, still too expansive to compute the batch gradient
(requires to store and compute XTX ...)

+ stochastic approximation of the batch gradient to decrease the computational burden

Stochastic gradient

Descent direction is computed as ∇β J(β) ≈ XT
i Xiβ − XT

i Yi , for a given sample i ∈ {1, . . . , n} in the
training set, where Xi is the ith line vector of X .

I cheaper than batch one for a single iteration, can be much more efficient

I one loop over all the i = 1, . . . , n training samples is called an epoch

Notebook N2 learning rate SGD.ipynb
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Stochastic Gradient Descent

Mini-batch SGD

Tradeoff between batch and stochastic gradients:

I gradient computed on a small subset (mini-batch) of the training set,

I one loop over all the mini-batches (thus over the whole training set) is an epoch

I one epoch is one iteration of the gradient procedure, which is repeated many times to achieve a
good minimization

Properties

I smoother convergence than pure SGD

I more computationally efficient than batch gradient

I size b of the mini-batch drives the trade-off (b = 1 is pure SGD, b = n is batch gradient).
Basically b = 32, 64 or 128.

+ standard optimization procedure for many ML methods (e.g. deep neural nets)
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Logistic regression
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Logistic regression

Discriminative model for classification: Y ∈ Y ← discrete set

Discriminative model
For a given X = x , we want to model directly

Pr(Y = k|X = x)

for each value of the class label k ∈ Y
I do not require to specify the marginal distribution of the inputs X

Model-based classification rule
We predict the class with the highest probability

Ŷ = arg max
k

Pr(Y = k|X = x)

I this is the optimal rule for misclassication rate referred to as Bayes Classifier... if the model is true
(of course this is not the case, but it may be useful)!

How can we use linear regression to model a probability Pr(Y = k|X = x) ?
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Logistic regression

Linear model for classification: Logistic regression (LR)

Classification problem Y ∈ Y ← discrete set

Binary classification problem: Y = {1, 2}
Consider the following model

Pr(Yi = 1|Xi = xi ) = φ(xT
i β) =

exp (xT
i β)

1 + exp (xT
i β)

,

where

I xi = (1, xi,1, . . . , xi,p)T ∈ Rp+1 ← intercept term included by
default,

I φ is the logistic function: maps a real value to a probability

φ : R→ (0, 1)

u 7→ exp u
1+exp u

= 1
1+exp (−u)

.
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Multiclass problem: Y = {1, 2, . . . ,K}
logistic model can be easily extented to the multiclass problem: multinomial logistic regression
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Logistic regression

LR is a generalized linear model

Consider

I pi ≡ Pr(Yi = 1|Xi = xi ) = φ(xT
i β)

I φ−1 : p ∈ (0, 1) 7→ log p
1−p
∈ R is the logit function

Generalized linear model

I Linear equation w.r.t. β: logit (pi ) = xT
i β,

I + additional nonlinear constraint (proba sum to 1): Pr(Yi = 2|Xi = xi ) = 1− pi = 1
1+exp (xTi β)

Maximum Likelihood Estimates

β̂ = arg min
β
−`(β)

where `(β) is the logistic log-likelihood (normal model yields standard LSE for linear regression)

I no analytical expression of β̂ which is computed by an optimization procedure, e.g. (Stochastic)
Gradient Descent
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Logistic regression

Conclusions

Generalized Linear Models
Learning of the prediction rule based on a model of Y given X

+ Linear regression, Logistic regression

Properties

I Simplicity: useful to capture the main effects

I Interpretability

I Efficient numerical procedures for large or high-dimensional data

Perspectives

I Regularization: Shrinkage and Selection procedures
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