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Linear models: regularization

Regularization methods

Supplementary materials

Prof. A. Ihler short (8mn) and educational video
https://www.youtube.com/watch?v=sO4ZirJh9ds

Wikipedia page
https://en.wikipedia.org/wiki/Regularized_least_squares#Specific_examples

Scikit-learn very nice documentation with examples (can stop just before section 1.1.4)
https://scikit-learn.org/stable/modules/linear_model.html
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Linear models: regularization

Reminder on Least Squares Estimators (LSE)

Linear regression model

For a sized n training set with p variables (may include the intercept)

Y = Xβ + ε,

where

I Y ∈ Rn is the response/output vector,

I X ∈ Rn×p is the data matrix (jth column X j is the sample vector fot jth input variable)

I ε ∈ Rn is the non-predictible part (noise)

I β ∈ Rp are the (unknown) coefficients/weights for the input variables

Least Squares (LS) prediction

For a test data x ∈ Rp, we predict ŷ = xT β̂ where the LSE

β̂ = (XTX )−1XT y ,

is the LS fit on the training set
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Limitations of Least Squares Estimators (LSE)

Problem
When rank X < p, or when X has singular values close to zero, then XTX is no more invertible, or ill
conditioned (eigenvalues close to zero)...

Causes

I redundant or nearly-collinear predictors, e.g. X k ≈ aX l + b, where X j is the jth column of X

I high dimensional problem where p ≈ n (or p > n)

Effects
no single, or stable, solution for β̂

I high variance of β̂ as an eigenvalue λi of XTX is close to zero (||β̂|| → +∞ as λi → 0),

I true error rate explodes since a small perturbation in the training set yields a substantially
different estimate β̂ and prediction rule ŷ = xT β̂

+ over-fitting problem
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Instability of LSE: Deconvolution illustration

I y ∈ Rn with n = 2562, β ∈ Rp with p = 2562,

I X ∈ Rn×p ← sized (2562)× (2562) matrix...

β ← original image y = Xβ ← blurred image

β̂=(XTX )−1XT y ← LS estimate

Due to the bad conditioning of XTX (e.v. close to zero), the noise (here numerical round-off errors) is

multiplied by an almost infinite gain, and the estimated coefficients β̂j explode to ±∞ !
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Regularization and shrinkage methods

Outline

Regularization and shrinkage methods
Ridge regression
Lasso estimator

Applications
prostate data
Heart diseases data
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Regularization and shrinkage methods

Regularization: shrinkage

Idea: introducing a little bias in the estimation of β may lead to a substantial decrease in variance and,
hence, in the true error rate

Penalized regression

Regularize the estimation problem by introducing a penalization term for β

β̃ = arg min
β

[RSS(β) + λPen(β)]

I RSS(β) is the fidelity term to the training set (replace with the opposite log-likehihood −`(β) for
generalized linear model, e.g. logistic regression)

I Pen(β) is the a priori to regularize the solution,

I λ > 0 is the penalization coefficient

Choosing λ: tradeoff between overfitting (small λ) and underfitting (large λ)

+ standard practice is to use cross-validation to estimate an optimal λ for the test error rate

7/ 22



Linear models: regularization

Regularization and shrinkage methods

Ridge regression

Ridge regression

Penalization in the (squared) `2 sense:

Pen(β) ≡ βTβ = ||β||22, ← Tychonov regularization

β̃ is thus obtained by minimizing

RSS(β)+λPen(β)=(Y−Xβ)T (Y−Xβ)+λβTβ,

=(β−(XTX+λI )−1XTY)T (XTX+λI)(β−(XTX+λI )−1XTY)+Cst,

Ridge estimator: β̃ = (XTX + λI )−1XTY

Remark
similar to LSE, with an additional ’ridge’ on the diagonal of XTX

I XTX + λI has all its eigenvalues greater than λ > 0, ← ensures that β̃ is always defined, and
stable for large enough λ

+ when λ→ 0, then β̃ → β̂ (over-fitting risk),

+ when λ→ +∞, then β̃ → 0 (under-fitting)

I Notebook: N1 L2 regularization.ipynb
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Regularization and shrinkage methods

Ridge regression

Ridge Regression: deconvolution illustration
I y ∈ Rn with n = 2562, β ∈ Rp with p = 2562,
I X ∈ Rn×p ← sized (2562)× (2562) matrix...

β ← original image y = Xβ ← blurred image

β̃=(XTX+λI )−1XT y ← ridge estimate β̂=(XTX )−1XT y ← LS estimate
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Regularization and shrinkage methods

Lasso estimator

Regularization by promoting sparsity

Sparse representations/approximations

A representation, or an approximation, is said to be sparse when most of the coefficients are zero

’Bet on Sparsity’ principle

Sparsity is a good option in high dimension!

I if the sparsity assumption does not hold, no method will be able to recover the underlying model
in high dimension where p ≈ n or p > n

I but if the sparsity assumption holds true, then the parameters can be efficiently estimated by a
method that promotes sparsity

+ Occam’s razor or KISS (keep it simple, stupid) principles: same idea that simpler models are
preferable than more complex ones

Application to the regression problem

choosing a penalization function Pen(β) that promotes the sparsity of β (i.e. with many components
βj = 0 for j = 1, . . . , p + 1) ← Lasso estimator
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Regularization and shrinkage methods

Lasso estimator

Lasso (’least absolute shrinkage and selection operator’) estimator

Definition

β̃lasso = arg min
β

[RSS(β) + λ ||β||1] ,

where ||β||1 =
∑p+1

j=1 |βj | is the `1 norm

I no analytical expression of β̃lasso

I but convex optimization problem where very efficient numerical procedures are available to
compute β̃lasso

Lasso advantages

Converges to a generally sparse solution, i.e. such that βk = 0 for a subset of index k

+ the less significant variables are explicitly discarded

+ similar stability than ridge estimator + variable selection

I Notebook: N2 L1 regularization.ipynb
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Regularization and shrinkage methods

Lasso estimator

Penalization with `1 and `2 norms: geometrical interpretation

I Least Squares estimator: β̂ = arg min RSS(β),

I Penalized/Regularized estimator: β̃ = arg min (RSS(β) + λPen(β))

⇔ β̃ = arg min RSS(β) under the constraint Pen
(
β̃
)
≤ s(λ).
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Illustration in dimension p = 2 : β = (β1, β2)T

I red ellipses are the contour plots of RSS

I blue ”balls” are the constraint sets for
lasso: Pen (β) = ||β||1 = |β1|+ |β2| (left),
ridge: Pen (β) = ||β||22 = β2

1 + β2
2 (right).

I LSE β̂ is the center of the red ellipses

I Penalized LSE β̃ is the intersection between red
ellipses and blue ”ball”

+ Here the RSS mainly varies along β2, and we get

β̃1 = 0 for lasso

(while β̃1 ≈ 0 but not zero for ridge)

`1 norm promotes the sparsity of the estimator: the less significant predictors are explicitly discarded (coeffs βk
are zero) ← model selection
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Regularization and shrinkage methods

Lasso estimator

Scale your data!

I Linear models (w/o regularization) are invariant under the scaling of the variables: the prediction
function is unchanged.

I Regularized linear models are not due to the penalty term: scaling of the variables matters!

+ the variables that have the greatest magnitudes are favoured (same problem for distance based
ML methods s.t. K-NN, SVM, ...)

Practical advices

I If the variables are in different units, scaling each is strongly recommended.

I If they are in the same units, you might or might not scale the variables (depend on your problem)

Usual scaling methods

I normalization in [0, 1]: x̃i =
xi −mini

maxi −mini

I standardization to get zero mean and unit variance: x̃i =
xi − µi

σi
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Applications

prostate data

Application: prostate data

Stamey et al. (1989) study to examine the association between prostate specific antigen (PSA) and
several clinical measures that are potentially associated with PSA in men. Objective is to predict the
Log PSA (supervised regression problem) from eight variables

I lcavol: Log cancer volume

I lweight: Log prostate weight

I age: The man’s age

I lbph: Log of the amount of benign hyperplasia

I svi: Seminal vesicle invasion; 1=Yes, 0=No

I lcp: Log of capsular penetration

I gleason: Gleason score

I pgg45: Percent of Gleason scores 4 or 5
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Applications

prostate data

Application : prostate data

Lasso estimate (`1-penalization): β̃(λ) = arg minβ RSS(β) + λ||β||1,

Lasso path: We can plot the estimated variable coeffs β̃(λ)j vs λ, or equivalently vs ||β̃(λ)||1
I For large λ all the coefficients ar zeros (||β̃(λ)||1 = 0)

I When λ↘ then ||β̃(λ)||1 ↗: most significant variables sequentially enters the model (non-zero coeffs)

df
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Choosing λ

I large ||β̃(λ)||1 (small λ) → overfitting

I small ||β̃(λ)||1 (large λ) → underfitting

I cross-validation estimation of λ yields

||β̃(λ)||1 = 1.06 (λ = 0.21)

⇒ only 3 predictors enter the model to predict
PSA: lcavol, svi, lweight
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Applications

prostate data

Application : prostate data

Comparison of ridge and lasso estimators
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Path of the penalized coefficients as a function of ||β̃(λ)||

I Ridge estimates are smooth functions of λ, with coefficients that are never stuck at zero.

I Lasso estimates are piecewise linear functions, with a kink each time a new variable enter the model

I Shrinkage effect: the larger λ, the more the coefficients are shrunken toward 0 for both penalties

I For small λ, thus large ||β̃(λ)||, both estimator becomes equivalent (convergence toward LSE)
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Applications

Heart diseases data

Application: South African coronary heart disease (CHD)

Matrix of the predictor scatterplots

I each plot ≡ pair of risk factors

I 160 cases / 302 controls

I ldl: ∼ cholesterol, sbp: systolic
blood pressure
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Applications

Heart diseases data

Application: South African CHD (Cont’d)

Logistic regression fit

Coefficient Std. Error Z score
(Intercept) −4.130 0.964 −4.285

sbp 0.006 0.006 1.023
tobacco 0.080 0.026 3.034

ldl 0.185 0.057 3.219
famhist 0.939 0.225 4.178
obesity −0.035 0.029 -1.187
alcohol 0.001 0.004 0.136

age 0.043 0.010 4.184

I A Z score ( ≡ Coeff / Std. Error) > 2 in absolute value is significant at the 5% level.

Must be interpreted with caution!

I systolic blood pressure (sbp) is not significant!

I nor is obesity (conversely, < 0 coefficient)!

→ result of the strong correlations between the predictors: over-fitting issue !
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Applications

Heart diseases data

Application: South African CHD (Cont’d) with greedy selection procedure

Model selection: greedy backward procedure

To prevent from over-fitting, find the variables that are sufficient for explaining the CHD outputs

I drop the least significant predictor, and refit the model

I repeat until no further terms can be dropped ← backward selection

Logistic regression fit with backward model selection procedure

Coefficient Std. Error Z score
(Intercept) −4.204 0.498 −8.45

tobacco 0.081 0.026 3.16
ldl 0.168 0.054 3.09

famhist 0.924 0.223 4.14
age 0.044 0.010 4.52

Interpretations

I Tobacco is measured in total lifetime usage in kilograms, with a median of 1kg for the controls
and 4.1kg for the cases

I An increase of 1kg ⇒ increase of the CHD proba of exp (0.081) = 1.084 or 8.4% (confidence
interval at 95% [1.03, 1.14])
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Applications

Heart diseases data

Application: South African CHD (Cont’d) with lasso selection procedure

Model selection: `1 penalization (Lasso type method)

β̃(λ) = arg min
β
−`(β) + λ||β||1,

→ function of λ where less significant variables are explicitly discarded

Path of the des coefficients `1-penalized coefficients as a function of ||β̂(λ)||1

Choosing λ

I large ||β̃(λ)||1 (small λ) →
over-fitting

I small ||β̃(λ)||1 (large λ) →
under-fitting

I 0.43 ≤ ||β̃(λ)||1 ≤ 1.3 →
4 same predictors than
backward selection procedure

Notebook:
N3 LR heart diseases SA.ipynb
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Applications

Heart diseases data

Conclusions on Regularization for linear models

Regularization procedures are essential tools for data analysis, especially for big datasets involving
many predictors, to

I prevent for over-fitting,

I better interpret the relations between the variables,

I improve the prediction performance

Shrinkage procedures

I `2 (ridge) regularization promotes the simplicity: shrink all the coefficients toward 0

I `1 (lasso) regularization promotes the simplicity+sparsity: shrink all the coefficients toward 0 +
coefficients of non-signicant enough variables exactly equal to 0

I useful to capture the main effects and to interpret the relations between the variables

+ concepts that extend to non-linear methods, e.g. neural nets
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