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Introduction to Artificial Intelligence and Machine Learning

Organization

Lecture and practices sessions

I ∼ 18h (from March 7th to May 9th, 2022)

Project: 2 subjects/datasets

1. Green-ER electrical consumption data

2. ATMO pollutant concentrations data

I personal work + ∼ 18h of supervised work

I Evaluation: project defense on May 30th.

Objectives

I Understand the theoretical basis of data science/machine learning/AI

I Implement/apply data science algorithms and models on current environmental or energy
applications using state-of-the-art frameworks
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The material

I Slides (pdf) and notebooks available here :
https:

//gricad-gitlab.univ-grenoble-alpes.fr/michelo/parcours-numerique-ia-2022/

I Jupyter notebooks are available to illustrate concepts and methods in Python (.ipynb files)

I Binders are also available to run them remotely and interactively (no need to install Python and
its dependencies, see README.md)

I If possible, materials that you produced (”reverse pedagogy” idea)
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What is machine learning?

Machine Learning ⊂ Artificial Intelligence
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What is machine learning?

Data Science Objective

How to extract knowledge or insights from data ?

Learning problems are at the cross-section of several applied fields and science disciplines
I Machine learning arose as a subfield of

I Artificial Intelligence,
I Computer Science.

Emphasis on large scale implementations and applications: algorithm centered
I Statistical learning arose as a subfield of

I Statistics,
I Applied Maths,
I Signal Processing, . . .

Emphasizes models and their interpretability: model centered

+ There is much overlap: Data Science
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What is machine learning?

Learning: human vs machine

The learning of a child
I walking: 1 year

I speaking: 2 years

I reasoning: the rest of the time
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What is machine learning?

Definitions of Learning

Machine Learning in Computer Science

Tom Mitchell (The Discipline of Machine Learning, 2006)

A computer program CP is said to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P, improves with experience E

Key points

I Experience E: data and statistics

I Performance measure P: optimization
I tasks T: utility

I automatic translation
I playing Go
I ... doing what human does
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What is machine learning?

Experience E: the data!

Type of data: qualitatives / ordinales / quantitatives variables

I Text: strings

I Speech: time series

I Images/videos: 2/3d dependences

I Networks: graphs

I Games: interaction sequences

I ...

Big data (volume, velocity, variety, veracity)

Data are available without having decided to collect them!

I importance of preprocessings (cleaning up, normalization, coding,...)

I importance of a good representation : from raw data to vectors
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What is machine learning?

Objective and performance measures P

Generalize

I Perform well (minimize P) on new data (fresh data, i.e. unseen during learning)

+ Derive good (P/error rate) prediction functions

A fish A fish
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Examples

Example of Task: Recognition of handwritten digits (US postal envelopes)

+ Predict the class (0,...,9) of each sample from an image of 16× 16 pixels, with a pixel intensity
coded from 0 to 255

I Low error rate to avoid wrong allocations of mails!

Supervised classification
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Examples

Example of Task: Spams Recognition

+ Define a model to predict whether an email is spam or not

I Low error rate to avoid deleting useful messages, or filling the mailbox with useless emails

supervised classification
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Examples

Examples of Tasks in Environment and Geosciences

Recognition of Hekla Volcano landscape, Iceland

+ Predict the class of landscape ∈ { Lava 1970, Lava 1980 I, Lava 1980 II, Lava 1991 I, Lava 1991
II, Lava moss cover, hyaloclastite formation, Tephra lava, Rhyolite, Scoria, Firn-glacier ice, Snow }
from digital remote sensing images

supervised (if partial ground truth available) or unsupervised classification
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Examples

Examples of Tasks in Environment and Geosciences

Prediction of El Niño southern oscillation

+ Predict, 6 months in advance, the intensity of an El Niño Southern Oscillation (ENSO) event from
ocean-atmosphere datasets (sea level pressure, surface wind components, sea surface temperature,
surface air temperature, cloudiness...)

supervised regression
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Examples

Examples of Tasks in Environment and Geosciences

Recognition of fish sounds

+ Predict the class of underwater sounds (roar,quack,drums,impulsion) from times series recorded by
hydrophones (fs = 156kHz)

supervised (if ground truth available) or unsupervised classification
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Examples

Examples of Tasks in Environment and Geosciences

Recognition of climate-ocean events

+ Predict the classes of SAR images of the ocean (convective cells in I, sea ice in K, weather front in
N,...) to detect climate-ocean events from water surface roughness

supervised classification
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Examples

[Project] Prediction of pollutant concentrations

+ Predict pollutant concentrations (03,N02,PM10,PM2.5) at time D0+1,+2,+3 from hourly
measures timeseries + weather data + chemistry based forecasting models

supervised regression (pollutant concentration predicton) / classification (pollution alert or not)
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Examples

[Project] Prediction of Green-ER electrical consumption

+ Predict electrical consumption (heating, air conditioning, electrical outlets, or global
consumption...) at various time horizons from hourly measures timeseries + weather data +
possible Green-ER occupancy data

supervised regression
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Basics

Definitions

Variable terminology

I Observed data referred to as input variables, predictors or features: X

I Data to predict referred to as output variables, targets or responses: Y

Type of prediction problem: regression vs classification

Depending on the type of the output variables

I When Y are quantitative data (e.g. O3 concentration values): regression

I When Y are categorical data (e.g. handwritten digits Y ∈ {0, . . . , 9}): classification

Two very close problems
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Basics

Prediction problem

Assumptions

Y = f (X ) + ε, (true relation)

I Input variables Xi are vectors in Rp:

Xi = (Xi,1, . . . ,Xi,p)T ∈ X ⊂ Rp

I Output variables Yi take values:
I In Y ⊂ R (regression)
I In a finite set Y (classification)

I ε is the non-predictible part (∼ noise)

Prediction rule
Function of prediction / rule of classification ≡ function f̂ : X → Y that estimate the true link
function f to get predictions of new elements Y given X

Ŷ = f̂ (X )
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Basics

Supervised or unsupervised learning

Training set ≡ available sample T to learn the prediction rule f̂

For a sized n training set, different cases:

I Supervised learning: T ≡ {(X1,Y1), . . . , (Xn,Yn)} are available

I Unsupervised learning: T ≡ (X1, . . . ,Xn) are available only

I Semi-supervised: mixed scenario (often encountered in practice, but less information than in the
supervised case)
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Toy Example

Binary classification

Toy 2D data set (two features X1 and X2) for binary classification (two classes)

1 0 1 2 3
x1

2

1

0

1

2

3

x 2

I each sample (X1,X2) in the dataset is plotted as a 2D point where the two features X1 and X2 are
displayed along the abscissa and ordinate axes respectively

I the binary class label Y is displayed as a color mark (e.g., yellow or purple)
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Toy Example

Simple linear model for classification

We seek a prediction model based on the linear regression of the outputs Y ∈ {−1, 1} :

Y = β1X1 + β2X2 + ε,

where β = (β1, β2)T is a 2D unknown parameter vector

Learning problem ⇔ Estimation of β

Least Squares Estimator β̂ = (β̂1, β̂2)T : minimize the training error rate (quadratic cost sense)

RSS(β) =
N∑
i=1

(Yi − β1Xi,1 − β2Xi,2)2

Classification rule based on least squares regression

f̂ (X ) =

{
1 if Ŷ = β̂1X1 + β̂2X2 ≥ 0,

−1 otherwise

Notebook N1 Linear Classification.ipynb
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Toy Example

Model complexity

Most of methods have a complexity related to their effective number of parameters

Linear classification: model order p

E.g. dth degree polynomial regression: p = d + 1 parameters βk s.t.

Y = β0 + β1x + β2x
2 + . . .+ βdx

d + ε,

= X dβd + ε,

where

X d =
[
1, x , x2, . . . , xd

]
,

βd = [β0, β1, β2, . . . , βd ]T .

Notebook: N2 Polynomial Classification Model Complexity.ipynb
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Toy Example

Test error vs Train Error
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Error rate vs polynomial order d (see
Notebook)

I Training error rate (i.e. error rate for train data
used for learning) minimized when d = 19

I Test error rate (i.e. error rate for test data not
used for learning) minimized when 3 ≤ d ≤ 7 ...

+ Training error always decrease with the model complexity. Can’t use alone to select the model!
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Toy Example

Model Selection

Fundamental trade-off

I Too simple model (high bias) → under-fitting

I Too complex model (high variance) → over-fitting
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Toy Example

Fundamental Bias-Variance trade-off

If the true model is
Y = f (X ) + ε,

then for any prediction rule f̂ (X ), Mean Squared Error (MSE) expresses as

E

[(
Y − f̂ (x)

)2
]

= Var
[
f̂ (x)

]
+ Bias

[
f̂ (x)

]2

+ Var [ε]

I Var [ε] is the irreducible part

I as the flexibility of f̂ ↗, its variance ↗ and the bias ↘
+ overfitting/underfitting trade-off
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Toy Example

Overview of Bias-Variance
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