
Neural Networks, Perceptron, MLP, Back propagation principle

Neural Networks, Perceptron, MLP,
Back propagation principle

ENSE3 / Grenoble-INP
Parcours Numérique 1A

Florent Chatelain, Olivier.JJ.Michel

GIPSA-Lab, Grenoble-INP, Univ Grenoble Alpes.

2019-2020

1/ 25

Neural Networks, Perceptron, MLP, Back propagation principle

Perceptron

Motivation
- Build a Bio-inspired parametric model, with possibly high complexity.

Rosenblatt’s perceptron, 1957

I Neural like structure, with a single unit

I n inputs

wj
def
= weight, or connecting weight

Let g(.) be the activation function, and x = [x1, . . . , xn] the input :

y = g(a(x))

a(x) =
n∑

j=1

wjxx

2/ 25

Neural Networks, Perceptron, MLP, Back propagation principle

Perceptron

Remarks

I

-for a (linear) classification problem, g(a) is a threshold (or sigmoidal) function
for a (linear) regression problem, g(a) = a

I for binary classification,

g(a) =

{
−1 if a ≤ 0
1 if a > 1

I It is often convenient to introduce a bias to account for possible affine separating

hyperplane :
[x1, . . . xn]← [1, x1, . . . , xn] = x
[w1, . . . ,wn]← [w0,w1, . . . ,wn] = w

I In order to predict the probability of x to be in a given class :

g(a(x)) =
1

1 + ea(x))

See 8 NN Perceptron MLP/N1 Perceptron.ipynb

3/ 25

Neural Networks, Perceptron, MLP, Back propagation principle

Perceptron

Training the perceptron

As for other ML approaches, minimize the empirical risk, i.e. an averaged cost
function.

Online learning

The weights (parameters) w0, . . . ,wn are updated to minimize the risk L(f (x i), y i)
each time that a new pair (x i , y i) is received, as opposed to batch learning. Gradient
descent algorithm minimization :

wj ← wj − ν
∂L(f (x i), y i)

∂wj

I ν is the learning rate. In practice, ν is often decreased when the risk is close to
the minimum.

I if ν is too large : possible instability
I if ν is too small : slow convergence

I Many epochs may be performed on the whole training set.

4/ 25

Neural Networks, Perceptron, MLP, Back propagation principle

Perceptron

historical example : binary classifier

I y i ∈ {−1,+1}∀i ∈ [1,N]

I L(f (x i , y i) = max(0,−y ia(x i)) =
max(0,−y iwT x i)

-3 -2 -1 0 1 2 3
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0-1 Loss
L(f(x),y)
Hinge loss

⇒ wj ←
{

wj if y iwT x i > 0
wj − νy iwT x i if y iwT x i ≤ 0

Albert Novikov theorem, 1962

Let T = {(x i , y i), i = 1 . . . ,N} be the training set. Let D, γ ∈ R+∗, then
IF
• ∀x i ∈ T , ||x i ||2 < D (← bounded support)

• ∃u ∈ Rn+1/ ||u||2 = 1and ∀(x i , y i) ∈ T , y iuT x i ≥ γ(← margin condition)

THEN the perceptron algorithm converges in less than
(

D
γ

)2
iterations.

See Perceptron sonar example.ipynb(part I on logical example)

5/ 25

Neural Networks, Perceptron, MLP, Back propagation principle

Multilayer perceptrons, Neural Nets

Motivation
Allow to deal with non linear frontiers between classes by inserting hidden layers,
within a FEED FORWARD network.

6/ 25

Neural Networks, Perceptron, MLP, Back propagation principle

Multilayer perceptrons, Neural Nets

Notations

wk
ij : weight for node j in layer lk for incoming node i

bki : bias for node i in layer lk
aki : product sum plus bias (activation) for node i in layer lk
ok
i : output for node i in layer lk

rk : number of nodes in layer lk
g : activation function for the hidden layer nodes
go : activation function for the output layer nodes

Then

akj = bkj +
∑rk−1

i=1 wk
ij o

k−1
i =

∑rk−1

i=0 wk
ij o

k−1
i

ok
j = g(akj) = g(

∑rk−1

i=0 wk
ij o

k−1
i)

7/ 25

Neural Networks, Perceptron, MLP, Back propagation principle

Gradient backpropagation algorithm

Gradient backpropagation algorithm

Backpropagation attempts to minimize the empirical risk (or loss)

L(X , θ) =
1

N

∑
i

L(f (x i), y i)

with respect to the neural network’s weights (gathered in θ) :
→ for each weight wk

ij , evaluate ∂L
∂wk

ij

. By decomposing into a sum over individual error

terms for each individual input-output pair

∂L(X , θ)

∂wk
ij

=
1

N

N∑
d=1

∂L(f (xd), yd)

∂wk
ij

=
1

N

N∑
d=1

∂Ld

∂wk
ij

.

8/ 25

Neural Networks, Perceptron, MLP, Back propagation principle

Gradient backpropagation algorithm

Loss function derivatives (index d is omitted hereafter

Remind the expression of output at node Nj :

ok
j = g(akj) = g(

rk−1∑
i=0

wk
ij o

k−1
i)

L depends on wk
ij trough akj : Apply the chain rule to the loss function partial derivative

∂L

∂wk
ij

=
∂L

∂akj

∂akj

∂wk
ij

δkj
def
= ∂L

∂akj
∂akj

∂wk
ij

= ∂
∂wk

ij

(∑rk−1

l=0 wk
lj o

k−1
l

)
= ok−1

i

⇒
∂L

∂wk
ij

= δkj o
k−1
i .

9/ 25

Neural Networks, Perceptron, MLP, Back propagation principle

Gradient backpropagation algorithm

Output Layer (MLP with m + 1 layers)

Assume a one-output neural network, so there is only one output node j = 1).
Expressing L in terms of the value am1

(
since δm1 is a partial derivative with respect to

am1
)

gives

L(f (x), y) = L
(
go(am1), y

)
where go(x) is the activation function for the output layer.
thus,

δm1 = L′ (g0(am1), y) g ′o(am1)

and finaly
∂L

∂wm
i1

= δm1 om−1
i = L′ (g0(am1), y) g ′o(am1) om−1

i .

10/ 25

Neural Networks, Perceptron, MLP, Back propagation principle

Gradient backpropagation algorithm

Backpropagation for hidden layers -cont’d- :

One has for the error term δkj in layer 1 ≤ k < m :

δ
k
j =

∂L

∂akj
=

rk+1∑
l=1

∂L

∂ak+1
l

∂ak+1
l

∂akj
,

where l ranges from 1 to rk+1

(The bias input ok
0 corresponds to wk+1

0j is fixed, does not depend on the outputs of previous

layers, thus l does not take on the value 0.)
Plugging in the error term :

δ
k
j =

rk+1∑
l=1

δ
k+1
l

∂ak+1
l

∂akj
.

From the definition of ak+1
l

ak+1
l =

rk∑
j=1

wk+1
jl g

(
akj
)
,

where g(x) is the activation function for the hidden layers,

∂ak+1
l

∂akj
= wk+1

jl g ′
(
akj
)
.

11/ 25

Neural Networks, Perceptron, MLP, Back propagation principle

Gradient backpropagation algorithm

Backpropagation -cont’d- :

Plugging this into the latter equation yields a final equation for the error term δkj in
the hidden layers, called the backpropagation formula :

δkj =
rk+1∑
l=1

δk+1
l wk+1

jl g ′
(
akj
)

= g ′
(
akj
) rk+1∑

l=1

wk+1
jl δk+1

l .

And putting all equations together :

∂L

∂wk
ij

= δkj o
k−1
i = g ′

(
akj
)
ok−1
i

rk+1∑
l=1

wk+1
jl δk+1

l .

⇒ gradient values for updating weights at layer k are computed from the gradient
∂Ld
∂ak+1

l

used for updating layer k + 1

Computation principle

For each pair (x id , y
i
d), compute the output of each neuron by going forward long the

network. Then , during a of back propagation of the errors, update all the weights
going from the last hidden layer toward the first one.

12/ 25

Neural Networks, Perceptron, MLP, Back propagation principle

Gradient backpropagation algorithm

BACKPROPAGATION ALGO, Main equations
For the partial derivatives,

∂Ld

∂wk
ij

= δkj o
k−1
i

where, for the final layer’s error term,

δm1 = g ′o(am1)L′(f (xd), yd)

where, for the hidden layers’ error terms,

δkj = g ′
(
akj
) rk+1∑

l=1

wk+1
jl δk+1

l .

For combining the partial derivatives for each input-output pair,

∂L(X , θ)

∂wk
ij

=
1

N

N∑
d=1

∂Ld

∂wk
ij

.

For updating the weights,

∆wk
ij = −ν

∂L(X , θ)

∂wk
ij

.

13/ 25

Neural Networks, Perceptron, MLP, Back propagation principle

Gradient backpropagation algorithm

Backpropagation algorithm summary

1) Calculate the forward phase for each (xd , yd) ; store the results ŷd , akj , and ok
j for

each node j in layer k by proceeding from layer 0, to layer m, the output layer.

2) Calculate the backward phase for each (xd , yd) ; store ∂Ld
∂wk

ij

for each weight wk
ij .

Proceed from output layer m, to layer 1, the input layer.
a) Evaluate δm1
b) Backpropagate the error terms for the hidden layers δkj , working

backwards
c) Evaluate the partial derivatives of the individual error Ld with respect

to wk
ij

3) Combine the individual gradients for each input-output pair to get the total
gradient for the entire set X =

{
(x1, y1), . . . , (xN , yN)

}
(a simple average of the

individual gradients).

4) Update the weights according to the learning rate α and total gradient ∂L(X ,θ)

∂wk
ij

14/ 25

Neural Networks, Perceptron, MLP, Back propagation principle

Gradient backpropagation algorithm

Remarks

In the classic formulation,
for hidden nodes

(
g(x) = σ(x)

)
(sigmoidal function)

and the output activation function is
(
go(x) = x

)
g ′(x) =

∂σ(x)

∂x
= σ(x)

(
1− σ(x)

)
.

g ′o(x) =
∂go(x)

∂x
=
∂x

∂x
= 1.

→ No need to remember the activation values am1 and akj in addition to the output

values om
1 and ok

j , greatly reducing the memory footprint of the algorithm.

BUT gradient descent algorithm may be infeasible when the training data size is huge.
Thus, a stochastic version of the algorithm is often used instead.

15/ 25

Neural Networks, Perceptron, MLP, Back propagation principle

Gradient backpropagation algorithm

Remarks -cont’d-

• Empirical risk minimization for multilayer perceptron is an ill-posed and
ill-conditioned NON CONVEX problem.

• Gradient values in the first hidden layers often takes either too large (explosion) or
too low values (vanishing gradient, leading to slow down learning convergence).

• Weights initialization values, learning rate, choice of g(), m, rm do all influence the
result ! first results date back to Hinton, 2006

• To avoid saturation effects of node outputs (either to 0 or to 1), l2 regularization of
L(f (x), y) may beapplied on θ.

16/ 25

Neural Networks, Perceptron, MLP, Back propagation principle

Stochastic Gradient method

Stochastic Gradient method

At each iteration, rather than computing

∇θL(X) = ∇θ(
N∑

d=1

L(xd)) =
N∑

d=1

∇θL(xd)

stochastic gradient descent randomly samples d at uniform and computes ∇θL(xd)
instead :
SGD uses ∇L(xd) as an unbiased estimator of ∇L(X) ;

E [∇θL(xd)] = E

[
1

k

k∑
i=1

∇L(xk)

]
= ∇L(X).

In a generalized case, at each iteration a mini-batch B that consists of indices for
training data instances may be sampled at uniform with replacement.

∇LB(X) =
1

|B|
∑
d∈B
∇L(xd)

update θ as
θ := θ − η∇LB(X)

17/ 25

Neural Networks, Perceptron, MLP, Back propagation principle

Stochastic Gradient method

I The per-iteration computational cost is O(|B|). Thus, when the mini-batch size is small, the
computational cost at each iteration is light.

I If the training data set has many redundant data instances, stochastic gradients may be so
close to the true gradient ∇θL(X) that a small number of iterations will find useful solutions
to the optimization problem.

I Stochastic gradient descent can be considered as offering a regularization effect especially
when the mini-batch size is small due to the randomness and noise in the mini-batch
sampling.

I Certain hardware processes mini-batches of specific sizes more efficiently.

See 8 NN Perceptron MLP/N1 Perceptron.ipynb (part II)
See 8 NN Perceptron MLP/N2 MLPClassifier.ipynb

18/ 25

Neural Networks, Perceptron, MLP, Back propagation principle

Stochastic Gradient method

19/ 25

Neural Networks, Perceptron, MLP, Back propagation principle

AutoEncoder

AutoEncoder
Images for this section were adapted from https ://www.jeremyjordan.me/autoencoders/

• Autoencoders are Unsupervised Neural Networks, designed for Representation
learning and/or dimension reduction.

• main idea : impose a bottleneck in the network to compressed knowledge
representation of the input.

rk : This assumes that the data are struc-
tured (input features are correlated) as for
e.g. iid data, such compression will be very
difficult if not impossible without loosing
much information.

20/ 25

Neural Networks, Perceptron, MLP, Back propagation principle

AutoEncoder

AutoEncoder principle

⇒ Formulate the problem as a supervised lear-
ning problem whose output is {x i}

⇒ The empirical risk to minimize is thus
L(f (x), x) : the bottleneck plays a key role (other-
wise the network simply passes the values to the
output.

⇒ if linear activation function were used, that
would perform PCA like dimension reduction

The AutoEncoder must be :

I sensitive enough to the inputs, to built an accurate reconstruction

I insensitive enough to the inputs to avoid overfitting

This requires to regularize the loss function of the form

L(f (x), x) + regularization

21/ 25

Neural Networks, Perceptron, MLP, Back propagation principle

AutoEncoder

UnderComplete AE

Limit of the flow of information going through the NN by limiting the nb of nodes in
the hidden layers :

No explicit regularization term is required here.
If too many nodes, i.e. high capacity -in the sense of Vapnik-, the AE may be capable
of learning a way to simply memorize the data. The primary aim to discover latent
variable cannot be attained !

22/ 25

Neural Networks, Perceptron, MLP, Back propagation principle

AutoEncoder

Sparse AE

Idea is to keep the number of nodes in hidden layers quite large, but regularize the
loss function by penalizing activations within a layer (6= weights regularisation) ⇒ only
a small nb of neurons are activated.

l1 regularization

For layer k :

(f (x), x) + λ

rk∑
j=1

|ok
j |

Remind that in the notation of the previous section, activation of a neuron was noted
ok
j = g(akj). Activations are in [0, 1] or [−1, 1], depending on the choice of g(). Below,

we assume ok
j ∈ [0, 1].

23/ 25

Neural Networks, Perceptron, MLP, Back propagation principle

AutoEncoder

Sparse AE - cont’d-

Kullback-Leibler regularization

Let ρ̂kj
def
= 1

n

∑n
i=1 o

k
j (x) be the average activation of neuron i in layer k, estimated

over a collection of n samples {x i , i = 1 . . . n}.

L(f (x), x) + λ
m∑

k=1

rk∑
j=1

KL(Bρ||Bρ̂kj)

where Bρ is the Bernoulli process of parameter ρ, thus

KL(Bρ||Bρ̂kj) = ρ log
ρ

ρ̂jk
+ (1− ρ) log

1− ρ
1− ρ̂jk

⇒ ρ acts as a ”sparsity parameter” ; small
values of ρ correspond to low probability
for the neuron to fire.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

i
k

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

K
L

in
 b

its

KL(B.15 || B
j
k)

24/ 25

Neural Networks, Perceptron, MLP, Back propagation principle

AutoEncoder

AE for denoising : principle

Alternate approach for denoising

Force the activation of the hidden layer to be weakly sensitive to small deviations of
the inputs

L(f (x), x) + λ
m∑

k=1

rk∑
j=1

||∇xo
k
j (x)||2

25/ 25

