
Decision Trees, Ensemble learning

Decision Trees, Ensemble learning
ENSE3 / Grenoble-INP
Parcours Numérique 1A

Florent Chatelain, Olivier J.J. Michel

GIPSA-Lab, Grenoble-INP, Univ Grenoble Alpes.

2019-2020

1/ 36



Decision Trees, Ensemble learning

Material used, references

Material used, references

I Books
K. P. Murphy : ”Machine Learning : A probabilistic perspective”,

MIT Press, 2012
A. C. Azencott :”Introduction au Machine Learning”,

Dunod, 2018
A. Geron :”Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition”,

O’Reilly Media, 2019

I Additional material
https ://fr.coursera.org/lecture/big-data-machine-learning/decision-trees-XewvA
https ://www.coursera.org/lecture/python-machine-learning/random-forests-
lF9QN
https ://www.coursera.org/lecture/practical-machine-learning/random-forests-
XKsl6

NOTA : Sections or items preceded by (*) are optional for this ENSE3-1A lecture

Credit : www Sources for some figures & examples :
https ://scikit-learn.org/stable/
https ://dimensionless.in/introduction-to-random-forest/
https ://gluon.mxnet.io/index.html
https ://skymind.ai/wiki/
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Decision trees

Decision trees

Trees are versatile hierarchical supervised machine learning (ML) algorithms able to
perform both classification and regression tasks. Decision trees

I allow to deal with discrete (as well as continuous) features or attributes (shape,
size, color,...)

I tackle Multi-class classification problems, without going back to binary
formulation

I tackle the problem of multi-modal classes (different criteria apply in different
regions of the observation space)

Remind : as we deal with supervised approach, knowledge of a training set on X × Y
is assumed : T = {(xi , yi ), i = 1 . . . ,N}

3/ 36



Decision Trees, Ensemble learning

Decision trees

Decision trees definition
A decision tree is a prediction model using sequential conditional operations, organized
in a tree :

I each node corresponds to a (binary) test on a single variable
I each child of a parent node corresponds to a possible answer of the test
I each leave or terminal node is associated to a single label or output value.

Let {R1, . . . ,R|T |} be the set of regions describing the partition induced by the tree
on the observation space X
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Decision trees

Example : a Classification problem (2 classes case) in [0, 1]2

I At each node, one searches a split (on x1 or x2) that makes the resulting subsets as ”pure” as
possible (see next slides for a definition of possible criteria).

I On this example, each leaf contains the proportion of blue class members (decide ”blue” for
leaf values larger than .5)
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Growing Trees

Generalities, method

Growing trees

CART Construction (Breiman 1984) : built a deterministic data structure for modeling decision
rules for a specific classification or regression problem. The aim is to create a model that predicts
the value of a target variable based on several input variables.

→ Each ”internal” node of a tree corresponds to one of the input variables ; Each leaf represents a
value of the target variable given the values of the input variables represented by the path from the
root to the leaf.

→ A tree can be ”learned” by splitting the source set into subsets based on an attribute value
test. The ”recursion” is completed when the subset at a node has all the same value of the target
variable, or when splitting no longer adds value to the predictions (greedy algo).

→ As any multiway split may be summerised as a series of binary splits, the focus is put on binary
splits.

→ Splits are obtained by choosing a test at each step that ”best” splits the set of items : What
does mean Choosing the ”best” split S = Sr ∪ Sl such that Sr ∪ Sl = ∅ for the test property T ?
An obvious heuristic is to choose the the query that decreases an impurity criterion a much as
possible.
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Growing Trees

Splitting rule

Splitting rule

Splitting criterion for regression

Mean Square Error (in general) : look for the coordinate index j and the splitting point
s satisfying

arg min
(j,s)

 ∑
xi∈Sr (j,s)

(yi − yr (j , s))2 +
∑

xi∈Sl (j,s)

(yi − yl (j , s))2


where yr (j , s) resp yl (j , s)) are the output (mean values) associated to Sr resp. Sl .
Here Sr , Sl are the right and left subsets defined by the test at the node to be split.

Splitting criterion for classification

Impurity based criterion : look for the coordinate index j and the splitting point s
satisfying

arg min
(j,s)

(
|Sr (j , s)|

n
Imp(Sr (j , s)) +

|Sl (j , s)|
n

Imp(Sl (j , s))

)
where Imp() is the Impurity function (see next slides) and n = |S | = |Sr |+ |Sr |.
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Growing Trees

Splitting rule

Consequence

Each split leads to a straight line classifying the dataset into two parts. Thus, the final
decision boundary will consist of straight lines (or boxes).

Example on a Sick/Healthy classification problem using 2 numerical features.
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Growing Trees

Splitting rule

Consequence

In comparison to regression, a decision tree can fit a stair case boundary to classify
data.
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Growing Trees

Stopping rule

Stopping rule

Stopping criterion

When should we stop splitting ?
- At a prescribed depth in the tree (most of the time difficult to set in advance)
- When S is ’pure’ : splitting further does not improve the classifier
- When n = |S | is too small to warrant statistical

significance of the estimated impurity

(*) Tree Pruning

Let (R1, . . . ,R|T |) be the partition of the learning set into |T | regions, defined by a
tree. An alternative to predefined stopping criterion consist in growing the tree as long
as possible and then operate Cost complexity pruning. Cost Complexity is defined as

Cλ(R1, . . . ,R|T |) =

|T |∑
t=1

nt Imp(Rt) + λ|T |

⇒ Requires to
- Grow the tree as deep as possible
- Prune the tree by merging sequentially regions (or children from a common parent)

until Cλ(R1, . . . ,R|T |) is optimal.
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Splitting : Impurity function

Impurity function for classification trees

Assume that ∀(xi , yi ) ∈ T , yi ∈ {1, . . .C}
Let pc

def
= 1
|S|
∑

xi∈S δ(yi , c) ; Widely used Impurity functions are

I Gini impurity

I Entropy (or information)

I Misclassification

rk : Split wrt a single attribute. In general for non numerical attributes, an exhaustive
search over all possibilities is performed. For real values attributes, gradient method
for identifying a separating hyperplane may be used. However, simple threshold on a
single attribute is often preferred.
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Splitting : Impurity function

Gini impurity
Gini Impurity of a set S of cardinal n measures the probability that a randomly chosen
element of the set would be incorrectly labeled if randomly labeled according to the
label distibution in S.

GI (S) =
C∑

c=1

P(y = c).P(y 6= c) =
C∑

c=1

pc [1− pc ] = 1−
C∑

c=1

p2
c

then
∆GI (Split) = GI (S)− P(Sl )GI (Sl )− (1− P(Sl ))GI (Sr )

where P(Sl ) = nl
n

and nl + nr = n, n = |S|
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Splitting : Impurity function

Gini impurity example

For the example above

I split1 :
S : pblue = 10/23 pred = 13/23 GI (S) = 0.4915
Sl : p(Sl ) = 12/23 pblue = 5/12 pred = 7/12 GI (Sl ) = 0.4861
Sr : p(Sr ) = 11/23 pblue = 5/11 pred = 6/11 GI (Sr ) = 0.4959

∆GI (split1) = 0.00071

I split2 :
S : pblue = 12/21 pred = 9/21 GI (S) = 0.4898
Sl : p(Sl ) = 10/21 pblue = 1 pred = 0 GI (Sl ) = 0
Sr : p(Sr ) = 11/21 pblue = 2/11 pred = 9/11 GI (Sr ) = 0.2975

∆GI (split1) = 0.3344

(*) Questions :
- Show that the max value of GI(S) for a C -class problem is (1− 1

C
) (hint : use

Lagrange multipliers)
- What is the max value of ∆GI on the 2-classes problem ?
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Splitting : Impurity function

Entropy Impurity

H(S) = −
C∑

k=1

P(y = k) log2 P(y = k)

the information gain (IG) associated to the split (or partition) (Sl , Sr ) is

IG(S) = H(S)− H(S |(Sl , Sr )) = H(S)− P(Sl )H(Sl )− P(Sr )H(Sr )

where H(Sl ) (resp H(Sr )) are evaluated by using the empirical probabilities of the
classes estimated from the subset Sl (resp Sr ) :

H(Sl ) = −
C∑

k=1

P(y = k|X ∈ Sl ) log2 P(y = k|X ∈ Sl )
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Splitting : Impurity function

Entropy Impurity Example

For the example above

I split1 :
S : pblue = 10/23 pred = 13/23 H(S) = 0.9877bit
Sl : p(Sl ) = 12/23 pblue = 5/12 pred = 7/12 H(Sl ) = 0.9779bit
Sr : p(Sr ) = 11/23 pblue = 5/11 pred = 6/11 H(Sr ) = 0.9940bit

GI (split1) = 0.0011bit

I split2 :
S : pblue = 12/21 pred = 9/21 H(S) = 0.9852bit
Sl : p(Sl ) = 10/21 pblue = 1 pred = 0 H(Sl ) = 0bit
Sr : p(Sr ) = 11/21 pblue = 2/11 pred = 9/11 GI (Sr ) = 0.6840bit

GI (split1) = 0.6269bit

(*) Questions :
- Show that the max value of H(S) for a C -class problem is log2C (hint : use
Lagrange multipliers)
- What is the max value of IG on the 2-classes problem ?
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Splitting : Impurity function

Misclassification Index

MI (N) = 1−maxcP(y = c)

and hence the gain in MI

∆MI (N) = MI (N)− P(Sl )MI (Nl )− P(Sr )MI (Nr )

= MI (N)− 1 + P(Sl )maxkP(y = k|X ∈ Sl ) +

P(Sr )maxkP(y = k|X ∈ Sr )
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Partial conclusion on decision tree growing

Partial conclusion on decision tree growing

I Growing trees require to select
I a cost or impurity function
I a stopping strategy

I Trees are easy to interpret

I Classification of new inputs is computationally cheap

I Decision boundaries are rectilinear

I Greedy approach does not guaranty optimal solution

I May exhibit (very) high sensitivity to outlier

In PRACTICE Trees are weak learners
(oversimple models, low performances, sensitivity to outliers...)

⇒ the solution is ENSEMBLE LEARNING : ”the wisdom of crowds”
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Partial conclusion on decision tree growing

Notebook N1 Classif tree.ipynb

Notebook N2 a Regression tree.ipynb

(*)Notebook N2 b Cost Complexity Pruning Regressor.ipynb
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Ensemble learning

Ensemble learning, bagging
Multiple approaches or algorithms :

Bagging, with many instances of a single
algorithm :

Ensemble Prediction : aggregate all results
of multiple weak learners by

I weighted average (regression)

I majority vote

I . . .
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Ensemble learning

Bagging

Bagging : Bootstrap Aggregating (Breiman 1996)

Motivations :

I Combining weak learners leads to decrease the variance of the predictor

I Each of the B weak learners uses a sample of m samples drawn randomly in T
I Weak learners may be computed in parallel

rk1 : Ensemble methods work best when the predictors are as independent from one
another as possible. One way to get diverse classifiers is to train them using very
different sample sets from the training set .

I Sampling with replacement → Bagging

I Sampling withoutreplacement → Pasting

rk2 Alternative sampling :

I The features may be sampled (e.g. if X is high dimensional) → Subspace
sampling

I Both instances from T and features may be sampled → Random patches method
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Bagging : random forest

Random forests

Random Forest consists in generating multiple small decision trees from random
subsets of the data (hence the name “Random Forest”).
→ Each of the decision tree gives a biased classifier (as it only considers a subset of
the data).
→ Each decision tree capture different trends in the data. This ensemble of trees is
like a team of experts each with a little knowledge over the overall subject but
thorough in their area of expertise. →

I In case of classification the majority vote is considered to classify a class.

I In case of Regression, we can use the avg. of all trees as our prediction.

I In addition to this, we can also weight some more decisive trees high relative to
others by testing on the validation data.
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Bagging : random forest

Random forests -cont’d

Illustration

Extra trees (”extremely randomized trees”)

Randomize both the learning subset, subset of features and thresholds :
→ : trades more bias for lower variance
→ : makes Extra-Trees much faster to train than regular Random Forests
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Bagging : random forest

Random forests -cont’d

Feature importance
Random Forests make it easy to measure the relative importance of each feature :
Feature’s importance is measured by looking at how much the tree nodes that use that feature
reduce impurity on average (across all trees in the forest). More precisely, it is a weighted average,
where each node’s weight is equal to the number of training samples that are associated with it.

Remarks
• Feature importance may be also assessed (nor any kind of learner) by shuffling the values of a
given feature, while keeping the others the same (’surrogate methods’) : this is assumed to set the
’predictive importance’ of the shuffled feature to almost zero. The difference in performance
measured between shuffled / un-shuffled, quantifies the importance of the feature. But : This
requires new test samples (out-of-bag) and is computationally expensive.
• Summing weighted Impurity gain at each node (involving a single feature) while computing the
random forest involves only marginal computational increase. A disadvantage is that splits are
biased towards variables with many classes, which also biases the importance measure.
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Bagging : random forest

feature importance example

Handwritten characters, Pixel importance, according to
16× 16 pixels images RF classifier with Gini Impurity
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Bagging : random forest

Random forest summary

+ One of the most accurate decision models.
+ Can be used to extract variable importance.
+ Do not require feature engineering (scaling and normalization)
+ Capable of generating complex decision boundaries
− Risk of overfitting in case of noisy data.
− Unlike decision trees, results may be quite difficult to interpret.
− Hyperparameters needs good tuning for high accuracy :

- Ntree : Nb of trees to grow in the forest.
- Nfeatures : Nb of variables randomly sampled as candidates for each split for a given tree.
- Replacement : Sampling done with or without replacement.
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Bagging : random forest

Notebook N3 a Random Forest Regression.ipynb

Notebook N3 b Random Forest Classif.ipynb

For another application on real world value, on a difficult problem :
Notebook N3 c Random forests Sonar Data.ipynb
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Boosting

Sequential ensemble learning : Boosting

General idea : train predictors sequentially, each trying to correct its predecessor.
I A single training (sub)set is used to derive the predictor

I Important drawback to this sequential learning technique : it cannot be parallelized

I It does not scale as well as bagging or pasting (it uses a single large learning set)
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Boosting

Boosting

The presentation below is mostly focused on a binary classification problem

Loss function

{−1, 1} × X → R
y , f (x) 7→ L(y , f (x))

In the following, emphasis is on L(y , f (x)) = e−yf (x), for y ∈ {0, 1}.

Why exponential loss ?

I Convex upper bound differentiable
approximation of (0, 1)-Loss

I Will lead to computationaly simple
derivations (see below)
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Boosting

Boosting principle

Aim to find a greedy algorithm for fitting adaptive basis model of the form

F (x) = w0 +
M∑

m=1

wmfm(x)

where the fm(.) are weak or base learners, {wi} are scalar weights.

Forward stagewise additive modeling

we want

f ∗(x) = arg min
f

N∑
i=1

L(yi , f (xi ))

where L(y , f (x))is the Loss function.

rk1 : if L(yi , f (xi ) is the quadratic loss, then

f ∗(x) = arg min
f

EY |x [(Y − f (x))2] = E[Y |x]

⇒ requires to know p(Y |x) !
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Boosting

Boosting principle, -cont’d-

rk2 : For binary classification L(yi , f (xi ) is chosen to be the [0, 1]-loss : it is not differentiable : it
may be replaced by the convex upper bound given by the exponential loss, defined for y ∈ {−1, 1}
L(yi , f (xi )) = e−yi f (xi ).

Then

∂

∂f
E[e−yf (x)] =

∂

∂f

[
p(y = 1|x)e−f (x) + p(y = −1|x)e+f (x)

]
= p(y = 1|x)e−f (x) + p(y = −1|x)e+f (x) = 0

⇒ e2f (x) = p(y=1|x)
p(y=−1|x) then

f ∗(x) =
1

2
log

p(y = 1|x)

p(y = −1|x)
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Boosting

Boosting principle, -cont’d-

Sequential approach
Finding f (.) is hard ; Boosting consists in solving it sequentialy :

Init :

f0(x) = arg min
γ

N∑
i=1

L(yi ,Φ(xi , γ))

where Φ(x, γ) is a (weak) learner, with (hyper)parameters γ.

Iteration m, m ≤ M :

(βm, γm) = arg min
β,γ

N∑
i=1

L(yi , fm−1(xi ) + βΦ(xi , γ))

where fm(x)
def
= fm−1(xi ) + βΦ(xi , γ)

rk1 : Set M by monitoring performances
on separate validation set
by using BIC, AIC
by recording wrt m Cost-complexity

rk2 : In practice, better perf. with shrinkage ν : fm(x)
def
= fm−1(xi ) + νβΦ(xi , γ), 0 < ν ≤ 1.
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AdaBoost

⇒ The solution depends on the loss function.

Example : binary classification with exponential loss : AdaBoost(Shapire 1997)

yi ∈ {−1,+1}, L(y , f (x))− = e−yf (x)

Lm(Φ)
def
=

N∑
i=1

e−yi [fm−1(xi )+βΦ(xi )] =
N∑
i=1

w
(m)
i e−yiβΦ(xi )

with w
(m)
i = e−yi fm−1(xi ), then

Lm(Φ) = e−β
∑

yi=φ(xi )

w
(m)
i + e+β

∑
yi 6=φ(xi )

w
(m)
i

= (e+β − e−β)
∑
i

w
(m)
i I(yi 6= Φ(xi )) + e−β

∑
i

w
(m)
i

⇒ choose Φm = arg minΦ w
(m)
i I(yi 6= Φ(xi ))

Φm() can be mearned by a weak learner, assuming that it can integrate the weights w
(m)
i . For

decision trees, w
(m)
i are integrated in the evaluation of the impurity index.

32/ 36



Decision Trees, Ensemble learning

AdaBoost

AdaBoost -cont’d
Inserting Φm() in Lm and setting the derivative wrt β to zero,

∂

∂β
[(e+β − e−β)

∑
i

w
(m)
i I(yi 6= Φ(xi )) + e−β

∑
i

w
(m)
i ] = 0

gives : β = 1
2

log 1−εm
εm

where εm =
∑

i w
(m)
i I(yi 6=Φ(xi ))∑

i w
(m)
i

AdaBoost algorithm

I Initialization : w
(0)
i = 1

N , ∀i ∈ {1, . . . ,N}
I Iterate : for m = 1, . . . ,M do

- fit Φm(x) to training set with weights w
(m)
i

- compute εm =
∑

i w
(m)
i

I(yi 6=Φ(xi ))∑
i w

(m)
i

- compute βm = 1
2 log 1−εm

εm

- w
(m+1)
i ← w

(m)
i exp (βmI(yi 6= Φ(xi ))

I return : f (x) = sign[
∑M

m=1 βmΦm(x)]
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AdaBoost, Gradient boosting

Decision boundaries of consecutive predictors, example :

Gradient boosting
Generic version, sequentially adding predictors to an ensemble, each one correcting its predecessor.
Instead of adapting instance weights, tries to fit the new predictor to the residual errors made by
the previous predictor

Gradient boosting algorithm

I Initialization : f0(x) = arg minγ
∑N

i=1 L(yi ,Φ(xi , γ)

I Iterate : for m = 1, . . . ,M do

- compute the gradient residual using rim = −
[
∂L(yi ,f (xi ))

∂f (xi )

]
f (xi )=fm−1(xi )

- use the weak learner to compute γm = arg minγ
∑N

i=1(rim − Φ(xi ; γm))2

- update fm(x) = fm−1(x) + νΦ(x, γm)

I return : f (x) = fM (x)
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Ensemble learning : setting M

Ensemble learning : setting M ?
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Ensemble learning : setting M

Scikit-learn usefull codes for this section :

from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.metrics import accuracy score
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import GradientBoostingRegressor
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