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Support Vector Machine (SVM)

Support Vector Machine (SVM)

Theory elaborated in the early 1990’s (Vapnik et al) based on the idea of ’maximum margin’
▶ deterministic criterion learned on the training set ← supervised classification
+ general, i.e. model free, linear classification rule
+ classification rule is linear in a transformed space of higher (possible infinite) dimension than the

original input feature/predictor space

Supplementary materials
Coursera online video with python notebook material (13mn)
https://www.coursera.org/lecture/data-analytics-accountancy-2/
introduction-to-support-vector-machine-dDPOv
Wikipedia page (quite complete and detailed)
https://en.wikipedia.org/wiki/Support_vector_machine
Short and easy to understand Scikit-learn documentation (with examples)
https://scikit-learn.org/stable/modules/svm.html
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Separating Hyperplane

Linear discrimination and Separating hyperplane

Binary classification problem
▶ X ∈ Rp

▶ Y ∈ {−1, 1} ← 2 classes
▶ Training set (xi, yi), for i = 1, . . . , n

Defining a linear discriminant function h(x) ⇔ defining a separating hyperplane H with equation

xTβ + β0 = 0,

▶ β ∈ Rp is the normal vector (vector normal to the hyperplane H),
▶ β0 ∈ R is the intercept (regression interpretation) or offset (geometrical interpretation)
+ H is an affine subspace of dimension p− 1
+ h(x) ≡ xTβ + β0 is the associated (linear) discriminant function
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Separating Hyperplane

Separating hyperplane and prediction rule

For a given separating hyperplane H with equation

xTβ + β0 = 0,

the prediction rule can be expressed as
▶ ŷ = +1, if h(x) = xTβ + β0 ≥ 0, (x is above H)
▶ ŷ = −1, otherwise, (x is below H)

or in an equivalent way:

ŷ ≡ G(x) = sign
[
xTβ + β0

]
Rk: x is in class y ∈ {−1, 1}: prediction G(x) is correct iff y

(
xTβ + β0

)
≥ 0
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Separable case

Separating Hyperplane: separable case
Linear separability assumption: ∃β ∈ Rp and β0 ∈ R s.t. the hyperplane xTβ + β0 = 0 perfectly
separates the two classes on the training set:

yk

(
xT

k β + β0
)
≥ 0, for k = 1, . . . , n,

Separable case (p = 2 example)
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Pb: infinitely many possible perfect
separating hyperplanes
xTβ + β0 = 0

+ Find the ’optimal’ separating
hyperplane?

+ makes the ’biggest gap’ from the
samples
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Separable case

Maximum margin separating hyperplane (separable case)

Distance of a point xk to an hyperplane H s.t. xTβ + β0 = 0,

d(xk,H) ≡ min
x

{
‖x− xk‖ : xTβ + β0 = 0

}
Maximum margin principle
We are interested in the ’optimal’ perfect separating hyperplane maximizing the distance M > 0, called
the margin, between the samples of each class and the separating hyperplane
⇒ Find β ∈ Rp and β0 ∈ R s.t. the margin

M = min
1≤k≤n

{d(xk,H)}

is maximized
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Separable case

Signed distance

From the orthogonality principle,

d(x0,H) = ‖x0 − x̂0‖ ,

where x̂0 is the orthogonal projection of x0 on H
x̂0 ∈ H ⇒ −x̂T

0 β = β0

⇒ x0 − x̂0 and β are collinear,
⇒ x0 − x̂0 = 〈x0 − x̂0,β

∗〉︸ ︷︷ ︸
unsigned distance

β∗, where β∗ = β
∥β∥ ,

⇒ signed distance = (x0 − x̂0)
T β

‖β‖ =
xT

0 β − x̂T
0 β

‖β‖ =
xT

0 β + β0
‖β‖ ,

Remarks
▶ |〈x0 − x̂0,β

∗〉| = ‖x0 − x̂0‖ = d(x0,H)← “signed distance”
▶ for any perfect separating hyperplane yk〈xk − x̂k,β

∗〉 = 1
∥β∥yk(xT

k β + β0)≥ 0, for k = 1, . . . , n,

7/ 47



Statistical Learning
Support Vector Machine (SVM)

Separable case

Canonical separating hyperplane
For any perfect separating hyperplane, for k = 1, . . . , n

yk〈xk − x̂k,β
∗〉 = d(xk,H)

Hence, the margin reads

M ≡ min
1≤k≤n

{d(xk,H)} =
1
‖β‖ min

1≤k≤n

{
yk(xT

k β + β0)
}

Remarks
▶ The bound M is reached (min of a countable set),
+ the samples at the margin are denoted as xmargin

Canonical expression of the separating hyperplane
β and β0 are normalized s.t.

ymargin(xT
marginβ + β0) = 1, thus M =

1
‖β‖
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Separable case

Primal problem (separable case)

Canonical hyperplane expression:

maximizing the margin M = 1
∥β∥ ⇔ minimizing ‖β‖

⇔ minimizing 1
2‖β‖

2

Primal optimization problem{
minβ,β0

1
2‖β‖

2,
subject to yk

(
xT

k β + β0
)
≥ 1, for 1 ≤ k ≤ n.

▶ quadratic criterion + linear inequality constraints
+ convex optimization problem for which standard numerical procedures are available
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Separable case

Reminder on constrained optimization
▶ Concept of feasible descent direction
▶ Primal problem (constrained form) / Dual problem (Lagrangian form)
▶ KKT necessary conditions
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Separable case

Reminder on constrained optimization

Constrained problem: primal problem {
minx f(x)
s.t. g(x) ≤ 0

Objective function f(x)
To decrease the objective function f(x), a descent direction d must satisfy

f(x + ϵd) ≈ J(x) + ϵ∇f(x)Td < f(x),

hence d is a descent direction iff ∇f(x)Td < 0
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Separable case

Reminder on constrained optimization (Cont’d)

Objective f(x)

descent direction: ∇f(x)Td < 0

Constraint g(x)
To satisfy the constraint, a feasible descent direction d must satisfy

g(x + ϵd) ≈ g(x) + ϵ∇g(x)Td ≤ 0,

hence

feasible direction:
{

g(x) < 0 ⇒ no constraint on d,
g(x) = 0 ⇒ ∇g(x)Td ≤ 0
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Separable case

Reminder on constrained optimization (Cont’d)

Necessary conditions: two possibilities for optimality

There is no feasible descent direction in x∗ when either
1. ∇f(x∗) = −α∇g(x∗), with α > 0, g(x∗) = 0
2. ∇f(x∗) = 0, i.e. α = 0, g(x∗) < 0

2) 1)

Remarks
1. x∗ lies at the limit of the feasible domain (i.e. g(x∗) = 0) and the two gradients are collinear and

in opposite direction
2. x∗ belongs to the interior of the feasible domain (i.e. g(x∗) < 0). Same 1st order necessary

conditions as those obtained when there is no constraint
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Separable case

Reminder on constrained optimization (Cont’d)

Constrained form: primal problem{
minx f(x)
s.t. gj(x) ≤ 0, for all j = 1, . . . , q

Lagrangian form: dual problem
Inequality convex constraints ⇒ introduction of the Lagrange multipliers αj{

minx f(x) +
∑

j αjgj(x∗)

s.t. αj ≥ 0, for all j = 1, . . . , q

Karush–Kuhn–Tucker (KKT) conditions
For x∗ being a local min, it is necessary that{

∇f(x∗) +
∑q

j=1 αj∇gj(x∗) = 0 ← first order conditions
s.t. αj ≥ 0 and αjgj(x∗) = 0 ← complementary conditions
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Separable case

End of reminder on constrained optimization
+ Dual form for SVM optimization problem
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Separable case

Lagrangian (separable case)

Linear constraints of positivity ⇒ introduction of the Lagrange multipliers

Lagrangian

L(β, β0,α) =
1
2‖β‖

2 −
n∑

i=1
αi
[
yi(xT

i β + β0)− 1
]

︸ ︷︷ ︸
≥0

,

where αi are the Lagrange multipliers

First order Karush–Kuhn–Tucker necessary conditions
Setting the partial derivatives w.r.t. β and β0 to zero yields{

β̂ =
∑n

i=1 αiyixi,
0 =

∑n
i=1 αiyi,

▶ plugging these expression in the Lagrangian yields the dual expression
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Separable case

Dual problem (separable case)

Dual optimization problem{
maxα L̃(α) =

∑n
i=1 αi − 1

2
∑n

i,j=1 αiαjyiyjxT
i xj,

subject to αi ≥ 0 and
∑n

i=1 αiyi = 0.

+ simple convex optimization problem for which standard numerical procedures are available
+ calculation of the optimum multipliers α̂i
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Separable case

Support vectors and maximum margin hyperplane (separable case)

Complementary slackness Karush–Kuhn–Tucker necessary conditions

α̂i[yih(xi)− 1] = 0 ⇒ α̂i = 0 as yih(xi) > 1

▶ since β̂ =
∑n

i=1 α̂iyixi, β̂ depends only on the points at the margin ← support vectors
▶ β̂0 can be derived from the complementary slackness expression for any of support vectors xmargin

ymarginh(xmargin)− 1 = 0 ⇒ β̂
Txmargin + β̂0 = ymargin,

⇒ β̂0 = −β̂
Txmargin + ymargin

+ the only inputs used to construct the maximum margin hyperplane are the support vectors and the
discriminant function reads

h(x) =
n∑

i=1
α̂iyi(x− xmargin)

Txi + ymargin
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Separable case

Maximum margin separating hyperplane (separable case)

Separable case
+ Maximizing the margin M between the separating hyperplane and the training data:

-3 -2 -1 0 1 2 3

X
1

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

X
2

The maximum margin hyperplane depends
only on the points at the margin called the
support vectors
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Nonseparable case

Nonseparable case

▶ in general, overlap of the 2 classes
+ No hyperplane that perfectly separates the training data
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Nonseparable case

Maximum margin separating hyperplane (nonseparable case)

Soft-Margin solution for the nonseparable case
Considering a soft-margin that allows wrong classifications
▶ introduction of slack variables ξi ≥ 0 s.t.

yi(xi
Tβ + β0) ≥ (1−ξi)

Support vectors include now the wrong classified points, and the points inside the margins (ξi > 0)
▶ Primal problem: adding a penalty in the criterion{

minβ,β0,ξ
1
2 ||β||

2 + C
∑n

i=1 ξi,
subject to yi(xi

Tβ + β0) ≥ 1− ξi,

where C > 0 is the “cost” or “regularization” parameter
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Nonseparable case

Regularization parameter (nonseparable case)

Criterion to be minimized: 1
2 ||β||

2 + C
n∑

i=1
ξi,

Influence of the regularization parameter C > 0
C drives the margin size, thus the number of support vectors
▶ C� 0 : small margin, less support vectors (∼ overfitting)
▶ C→ 0+ : large margin, more support vectors (∼ underfitting)
▶ C→ +∞ : converges in the separable case to the Hard-Margin solution

Rk: strength of the regularization is inversely proportional to C (compared with the regularization parameter λ

for ridge penalty, C ≡ 1
λ

)

Choosing the regularization parameter C > 0
▶ the optimal C can be estimated by cross validation
+ performance might not be very sensitive to choices of C (due to the rigidity of a linear boundary)
+ usually C ≈ 1 yields a good trade-off
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Nonseparable case

Dual problem (nonseparable case)

Introducing the Lagrangian and substituting the first order KKT conditions w.r.t. β, β0, ξ yields the
dual expression

Dual optimization problem{
maxα L̃(α) =

∑n
i=1 αi − 1

2
∑n

i,j=1 αiαjyiyjxT
i xj,

subject to 0 ≤ αi ≤ C and
∑n

i=1 αiyi = 0.

+ only difference w.r.t the separable case: αi ≤ C constraint!
+ simple convex optimization problem for which standard numerical procedure are available
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Nonseparable case

Optimal separating hyperplane

Soft-Margin example (nonseparable case)
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Vector Supports
The support vectors are now the
points at the margin, inside the
margin, or wrongly classified.

ξ∗i ≡ Mξi ← distance between a
support vector and the margin
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Linear discrimination: comparison of SVM vs LDA

Linear discrimination: SVM vs LDA

Linear discrimination
▶ Linear Discriminant Analysis (LDA): Gaussian generative model
▶ SVM: criterion optimization (maximizing the margin)
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Linear discrimination: comparison of SVM vs LDA

Linear discrimination: SVM vs LDA (Cont’d)
Adding one atypical data
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LDA
SVM property
▶ Nonsensitive to atypical points (outliers) far from the margin
+ sparse method (information ≡ support vectors)
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Transformed space and Kernel function

Nonlinear discrimination in the input space

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

X
1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

X
2 Sometimes a linear separation won’t work,

whatever the slack variables...

Transformed space F
▶ Choice of a transformed space F (expansion space) where the linear separation assumption is

more relevant
▶ Nonlinear expansion map ϕ : Rp → F , x 7→ ϕ(x)← enlarged features
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Transformed space and Kernel function

Nonlinear discrimination in the input space
▶ Non-linear transformation: ’projection’ in the space of monomials of order 2.

ϕ : R2 → R3

x 7→ ϕ(x)
(x1, x2) 7→ (x2

1, x2
2,
√

2x1x2)

▶ In R3, the inner product can be expressed as

〈ϕ(x), ϕ(x′)〉R3 =
3∑

i=1

ϕ(x)iϕ(x′)i

= ϕ(x)1ϕ(x′)1 + ϕ(x)2ϕ(x′)2 + ϕ(x)3ϕ(x′)3

= x2
1x′2

1 + x2
2x′2

2 + 2x1x2x′
1x′

2

= (x1x′
1 + x2x′

2)
2

= 〈x, x′〉2R2

= k(x, x′).

Remark: k(x, x′) can be computed directly from the input data without computing ϕ(x) (see later the
’Kernel Trick’)!
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Transformed space and Kernel function

Nonlinear discrimination in the input space
▶ X ∈ R2, ϕ(x) = (x2

1, x2
2,
√

2x1x2)
T
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Linear separation in the feature space F ⇒ Nonlinear separation in the input space
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Transformed space and Kernel function

Kernel trick
The SVM solution depends only on the inner product between the input features ϕ(x) and the support
vectors ϕ(xmargin)

Kernel trick
Use of a kernel function k associated with an expansion/feature map ϕ:

k : Rp × Rp → R
(x, x′) 7→ k(x, x′) ≡ 〈ϕ(x), ϕ(x′)〉

and the separating hyperplane reads h(x) =
∑n

i=1 α̂iyik(xi, x) + β̂0

Advantages
▶ computations are performed in the original input space: less expensive than in a high dimensional

transformed space F
▶ explicit representations of the feature map ϕ and enlarged feature space F are not necessary, the

only expression of k is required!
+ possibility of complex transformations in possible infinite space F
+ standard trick in machine learning not limited to SVM (kernel ridge regression, gaussian process,

spectral clustering, kernel-PCA . . .)
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Transformed space and Kernel function

Kernel function

Definition (Positive semi-definite kernel)
k : Rd × Rd → R is positive semi-definite is
▶ ∀(x, x′) ∈ Rd × Rd, k(xi, xj) = k(xj, xi).
▶ ∀n ∈ N, ∀ξ1 . . . ξn ∈ R, ∀x1 . . . xn ∈ Rd,

∑n
i,j ξiξjk(xi, xj) ≥ 0.

Theorem (Mercer Theorem)
To every positive semi-definite kernel k, there exists a Hilbert space F and a feature map ϕ : Rd → H
such that for all xi, xj we have k(xi, xj) = 〈ϕ(xi), ϕ(xj)〉H.
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Transformed space and Kernel function

Operations on kernels

Let k1 and k2 be positive semi-definite, and λ1,2 > 0 then:
1. λ1k1, (multiplication by a positive scalar)
2. λ1k1 + λ2k2, (sum of kernels),
3. k1k2, (product of kernels),
4. exp(k1), (exponential of kernel),
5. (xi, xj) 7→ g(xi)g(xj)k1(xi, xj), with g : Rd → R, (multiplication by a function)

are all positive semi-definite, hence valid kernels.

+ These operations allow us to create more complicated kernels by combining simple ones.
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Transformed space and Kernel function

Choosing the Kernel function

Usual kernel functions
▶ Linear kernel ( F ≡ Rp) : k(x, x′) = xTx′

▶ Polynomial kernel (dimension of F increases with the order d)

k(x, x′) = (xTx′)d or (xTx′ + 1)d

▶ Gaussian radial function (F with infinite dimension)

k(x, x′) = exp
(
−γ||x− x′||2

)
▶ Neural net kernel (F with infinite dimension)

k(x, x′) = tanh
(
κ1xTx′ + κ2

)
+ standard practice is to estimate the optimal kernel parameters by cross-validation
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Examples

Application: binary data (cf course 2 example)
Linear kernel

SVM decision boundary

SVM margin boundaries

Bayes (optimal) decision boundary
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Examples

Application: binary data (cf course 2 example)

Linear kernel

SVM decision boundary

SVM margin boundaries

Bayes (optimal) decision boundary
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Examples

Application: binary data (cf course 2 example)

Polynomial kernel (d = 4)

C ≈ 1

SVM decision boundary

SVM margin boundaries

Bayes (optimal) decision boundary
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Examples

Application: binary data (cf course 2 example)

Gaussian radial kernel (γ = 1)

C ≈ 1

SVM decision boundary

SVM margin boundaries

Bayes (optimal) decision boundary
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Examples

Scale your data!
Scaling of the variables matters!
For instance, with Gaussian kernel

k(x, x′) = exp
(
−γ||x− x′||2

)
= exp

(
−γ

p∑
i=1

(xi − x′i )2

)
,

the variables that have the greatest magnitudes are favored to compute distances or inner-products.

Practical advices
▶ If the variables are in different units, scaling each is strongly recommended.
▶ If they are in the same units, you might or might not scale the variables (depend on your problem)

Usual scaling methods
▶ normalization in [0, 1]: x̃i =

xi −mini
maxi−mini

▶ standardization to get zero mean and unit variance: x̃i =
xi − µi
σi
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Multiclass SVM

Multiclass SVM

▶ Y ∈ {1, . . . ,K} ← K classes
Standard approach: direct generalization by using multiple binary SVMs

OVA: one-versus-all strategy
▶ K classifiers between one class (+1 label) versus all the other classes (−1 label)
+ classifier with the highest confidence value (e.g. the maximum distance to the separator

hyperplane) assigns the class

OVO: one-versus-one strategy
▶ (K

2
)
= K(K− 1)/2 classifiers between every pair of classes

+ majority vote rule: the class with the most votes determines the instance classification

Which to choose? if K is not too large, choose OVO
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SVM vs Logistic regression (LR)

SVM vs Logistic regression (LR)

▶ When classes are nearly separable, SVM does better than LR. So does LDA.
▶ When not, LR (with ridge penalty) and SVM are very similar
▶ If one wants to estimate probabilities for each class, LR is the natural choice
▶ For non linear boudaries, kernel SVMs are popular. Can use kernels with LR and LDA as well, but

computations are more expensive.
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Conclusions on Support Vector Machines

SVM properties
▶ model free approach based on a maximum margin criterion: may be very efficient for real-word

data (but do not directly provide probability estimates nor variable importance weights)
▶ memory efficient sparse solution characterized by the only support vectors
▶ versatile algorithm: different choices of kernels to make a nonlinear classification in the original

input space by performing an implicit linear classification in a higher dimensional space
▶ Possible extensions to other tasks than classification like regression (support vector regression) or

anomaly detection (one-class SVM)
▶ effective in high dimensional spaces even when p > n.
▶ computionally expensive to train for large n data sets: cost of the optimization procedure to solve

the quadratic problem scales from O(pn2) to O(pn3) operations depending on the training set.
▶ popular algorithm, with a large literature
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Perspectives on ’Black Box’ (model free) approaches

Random Forests
▶ involve decision tree to split the prediction space in simple regions
▶ combine multiple decision trees to yield a single consensus prediction
+ method able to scale efficiently to high dimensional data and large data sets

Deep Neural Nets
▶ Neural Nets with multiple hidden layers between input and output ones
▶ many variants of deep architectures (Recurrent, Convolutional,...) used in specific domains

(speech, vision, ...)
▶ very computationally expensive to train due to the high number of parameters
▶ supported by empirical evidence
+ dramatic performance jump for some big data applications
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Outline for model free approaches

Support Vector Machine (SVM)
Separating Hyperplane
Separable case
Nonseparable case
Linear discrimination: comparison of SVM vs LDA
Transformed space and Kernel function
Examples
Multiclass SVM
SVM vs Logistic regression (LR)

Conclusions

Appendix: Some words on Random Forests
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Appendix: Some words on Random Forests

Random Forests

▶ Introduced in 2001 (Breiman)
▶ Model free and non linear
▶ Build a large collection of de-correlated trees and average them
▶ Combination of weak learners
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Decision trees
V
ar
ia
b
le
v 2

Variable v1

V
ar
ia
b
le
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Random Forests

▶ For each tree:
▶ Draw bootstrap sample Xb for training sample
▶ Learn tree, for each node

▶ select m features from the initial p features
▶ Find the best split (e.g. Gini index, entropy ...)

46/ 47



Statistical Learning
Appendix: Some words on Random Forests

Application: binary data
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