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Statistical Learning

Generative models

Generative models

Two kinds of approaches based on a model :

1. Discriminative approaches : direct learning of p(Y |X ),
e.g. Regression, logistic regression ← next lecture

2. Generative models : learning of the joint distribution p(X ,Y )

p(X ,Y ) = p(X |Y )︸ ︷︷ ︸
likelihood

Pr (Y )︸ ︷︷ ︸
prior

,

e.g. linear/quadratic discriminant analysis, Näıve Bayes ← today’s lecture
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Generative models

Discriminant functions

For both model based approaches, Bayes classifier is defined as

f ∗(x) = argmax
k∈Y

Pr(Y = k|X = x)

▶ equivalent to consider a set of functions δk(x), for k ∈ Y, derived from a monotone
transformation of posterior probability Pr (Y = k|X = x)

▶ decision boundary between classes k and l is then defined as the set {x ∈ X : δk(x) = δl(x)}

Definition
δk(x) are called the discriminant functions of each class k

☞ x is predicted in the k0 class such that k0 = argmaxk∈Y δk(x)

3/ 27



Statistical Learning

Generative models

Generative models : Estimation problem

Assumptions

▶ classification problem with K classes : Y ∈ Y = {1, . . . ,K},
▶ input variables : X ∈ Rp

Bayes rule :

Pr (Y = k|X = x) =
p(x |Y = k) Pr (Y = k)

p(x)
=

p(x |Y = k) Pr (Y = k)∑K
j=1 p(x |Y = j) Pr (Y = j)

.

In practice, the following quantities are unknown :

▶ densities of each class pk(x) ≡ p(x |Y = k)

▶ weights, or prior probabilities, of each class πk ≡ Pr (Y = k)

Estimation problem

These quantities must be learned on a training set :

learning problem ⇔ estimation problem in a parametric or not way
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Discriminant Analysis

Discriminant Analysis

Two kinds of Discriminant Analysis :

▶ Linear Discriminant Analysis

▶ Quadratic Discriminant Analysis

In both cases, the key assumption is that, within each class, the input variables Xi are assumed to be
normally distributed.

Supplementary materials

short (12mn) Sidney Univ. online video
https://www.youtube.com/watch?time_continue=719&v=D4C7YbfFQSk&feature=emb_logo

Wikipedia page (quite complete and detailed)
https://en.wikipedia.org/wiki/Linear_discriminant_analysis

short and simple Scikit-learn documentation (with examples)
https://scikit-learn.org/stable/modules/lda_qda.html
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Discriminant Analysis

Quadratic Discriminant Analysis (QDA)

Quadratic Discriminant Analysis (QDA)

Supervised classification assumptions

▶ X ∈ Rp, Y ∈ Y = {1, . . . ,K},
▶ sized n training set (X1,Y1), . . . (Xn,Yn)

QDA Assumptions

The input variables X , given a class Y = k, are distributed according to a parametric and Gaussian
distribution :

X |Y = k ∼ N (µk ,Σk) ⇔ pk(x) =
1

(2π)p/2|Σk |1/2
e−

1
2
(x−µk )

TΣ−1
k

(x−µk )

The Gaussian parameters are, for each class k = 1, . . . ,K

▶ mean vectors µk ∈ Rp,

▶ covariance matrices Σk ∈ Rp×p,

☞ set of parameters θk ≡ {µk ,Σk}, plus the weights πk , for k = 1, . . . ,K .
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Discriminant Analysis

Quadratic Discriminant Analysis (QDA)

Example

Mixture of K = 3 Gaussians

▶ Y ∈ {1, 2, 3}
▶ X ∈ R2
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Discriminant Analysis

Quadratic Discriminant Analysis (QDA)

Example

Mixture of K = 3 Gaussians

▶ Y ∈ {1, 2, 3}
▶ X ∈ R2
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Discriminant Analysis

Quadratic Discriminant Analysis (QDA)

QDA parameter estimation

Log-likelihood

For the training set,

ℓ (θ1, . . . , θK , π1, . . . , πK−1) = log p ((x1, y1), . . . , (xn, yn)),

=
n∑

i=1

log p ((xi , yi )), ← i.i.d. training set,

=
n∑

i=1

log [p (xi |yi ) Pr (yi )],

=
n∑

i=1

log [πyi pyi (xi ; θyi )].

Rk : πK = 1−
∑K−1

j=1 πj is not a parameter
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Discriminant Analysis

Quadratic Discriminant Analysis (QDA)

QDA parameter estimation (Cont’d)

Notations

▶ nk = #{yi = k} is the number of training samples in class k,

▶
∑

yi=k is the sum over all the indices i of the training samples in class k

(Unbiased) Maximum likelihood estimators (MLE)

▶ π̂k =
nk
n
, ← sample proportion

▶ µ̂k =

∑
yi=k xi

nk
, ← sample mean

▶ Σ̂k = 1
nk−1

∑
yi=k (xi − µ̂k) (xi − µ̂k)

T , ← sample covariance

Rk : 1
nk−1

is a bias correction factor for the covariance MLE (otherwise 1
nk
)
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Discriminant Analysis

Quadratic Discriminant Analysis (QDA)

QDA decision rule

The classification rule becomes

f (x) = argmax
k∈Y

Pr(Y = k|X = x , , θ̂, π̂),

= argmax
k∈Y

log Pr(Y = k|X = x , θ̂, π̂)︸ ︷︷ ︸
δk (x)

,

where

δk(x) = −
1

2
log

∣∣∣Σ̂k

∣∣∣− 1

2
(x − µ̂k)

T Σ̂−1
k (x − µ̂k) + log π̂k +��Cst,

is the discriminant function

Remarks

1. different rule than the Bayes classifier as θ replaced by θ̂ (and π replaced by π̂)

2. when n≫ p, θ̂ → θ (and π̂ → π) : convergence to the optimal classifier if the Gaussian model is
correct...
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Discriminant Analysis

Quadratic Discriminant Analysis (QDA)

QDA decision boundary

The boundary between two classes k and l is described by the equation

δk(x) = δl(x)⇔ Ck,l + LT
k,lx + xTQT

k,lx = 0, ← quadratic equation

where

▶ Ck,l = −
1

2
log
|Σ̂k |
|Σ̂l |

+ log
π̂k

π̂l
− 1

2
µ̂T
k Σ̂

−1
k µ̂k +

1

2
µ̂T
l Σ̂

−1
l µ̂l , ← scalar

▶ Lk,l = Σ̂−1
k µ̂k − Σ̂−1

l µ̂l , ← vector in Rp

▶ Qk,l =
1

2

(
−Σ̂−1

k + Σ̂−1
l

)
, ← matrix in Rp×p

☞ Quadratic discriminant analysis
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Discriminant Analysis

Quadratic Discriminant Analysis (QDA)

QDA example

Mixture of K = 3 Gaussians

▶ Estimation of the parameters µ̂k , Σ̂k and π̂k , for k = 1, 2, 3
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Discriminant Analysis

Quadratic Discriminant Analysis (QDA)

QDA example

Mixture of K = 3 Gaussians

▶ Estimation of the parameters µ̂k , Σ̂k and π̂k , for k = 1, 2, 3
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Discriminant Analysis

Quadratic Discriminant Analysis (QDA)

QDA example (Cont’d)

Mixture of K = 3 Gaussians

▶ Classification rule : argmaxk=1,2,3 δk(x)

▶ Quadratic boundaries {x ; δk(x) = δl(x)}
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Discriminant Analysis

Linear Discriminant Analysis (LDA)

LDA principle

LDA Assumptions

Additional simplifying assumption w.r.t. QDA : all the class covariance matrices are identical
(“homoscedasticity”), i.e. Σk = Σ, for k = 1, . . . ,K

(Unbiased) Maximum likelihood estimators (MLE)

▶ π̂k and µ̂k are unchanged,

▶ Σ̂ = 1
n−K

∑K
k=1

∑
yi=k (xi − µ̂k) (xi − µ̂k)

T , ← pooled covariance

Rk : 1
n−K

is a bias correction factor for the covariance MLE (otherwise 1
n
)

LDA discriminant function

δk(x) = −
1

2
log

∣∣∣Σ̂∣∣∣− 1

2
(x − µ̂k)

T Σ̂−1(x − µ̂k) + log π̂k +��Cst,
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Discriminant Analysis

Linear Discriminant Analysis (LDA)

LDA decision boundary

The boundary between two classes k and l reduces to the equation

δk(x) = δl(x)⇔ Ck,l + LT
k,lx = 0, ← linear equation

where

▶ Ck,l = log
π̂k

π̂l
− 1

2
µ̂T
k Σ̂

−1µ̂k +
1

2
µ̂T
l Σ̂

−1µ̂l , ← scalar

▶ Lk,l = Σ̂−1 (µ̂k − µ̂l) , ← vector in Rp

▶ Qk,l = 0,

☞ Linear discriminant analysis
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Discriminant Analysis

Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA)

Mixture of K = 3 Gaussians

▶ Estimation of the parameters µ̂k , π̂k , for k = 1, 2, 3, and Σ̂
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Discriminant Analysis

Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA)

Mixture of K = 3 Gaussians

▶ Classification rule : argmaxk=1,2,3 δk(x)

▶ linear boundaries {x ; δk(x) = δl(x)}
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Discriminant Analysis

Linear Discriminant Analysis (LDA)

Complexity of discriminant analysis methods

Effective number of parameters

▶ LDA : (K − 1)× (p + 1) = O(Kp)

▶ QDA : (K − 1)×
(

p(p+3)
2

+ 1
)
= O(Kp2)

Remarks

▶ in high dimension, i.e. p ≈ n or p > n, LDA is more stable than QDA which is more prone to
overfitting,

▶ both methods appear however to be robust on a large number of real-word datasets

▶ LDA can be viewed in some cases as a least squares regression method

▶ LDA performs a dimension reduction to a subspace of dimension ≤ K − 1 generated by the
vectors zk = Σ̂−1(µ̂k − µ̂K ) ← dimension reduction from p to K − 1 !
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Näıve Bayes (NB)

Näıve Bayes (NB)

NB classifiers
Family of ”probabilistic classifiers” based on applying Bayes’ theorem on a generative model, with
strong (näıve) independence assumptions between the features.

Can be coupled with

▶ parametric models (Gaussian, Bernoulli, Multinomial,...) with maximum likelihood estimation

▶ or non-parametric models with kernel density estimation

Supplementary materials

Wikipedia page (quite detailed) https://en.wikipedia.org/wiki/Naive_Bayes_classifier

short and simple Scikit-learn documentation
https://scikit-learn.org/stable/modules/naive_bayes.html
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Näıve Bayes (NB)

Näıve Bayes (NB)

General assumptions

▶ X = (X1, . . . ,Xp) ∈ Rp, Y ∈ Y = {1, . . . ,K},

NB Assumption

Simplifying assumption : given Y , the components X1, . . . ,Xp are assumed to be independent :

pk(x) =

p∏
j=1

pk,j(xj).

Remarks

▶ independence reduces one estimation problem in p dimensions to p much simpler 1D estimation
problems ← prevent from curse of dimensionality

▶ independence assumption is näıve, i.e. not realistic in practice... but yields efficient/stable/robust
approaches especially in high dimension !
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Näıve Bayes (NB)

Näıve Bayes for parametric estimation

Gaussian model

▶ NB + QDA : X |Y = k ∼ N (µk ,Σk), where the Σk are diagonal, for k = 1, . . . ,K

▶ NB + LDA : X |Y = k ∼ N (µk ,Σ), where Σ is diagonal,

Other classical parametric models

▶ Bernoulli NB for binary events models (e.g., word occurence vectors in text processing)

▶ Multinomial NB for multiple events models (e.g., word count vectors in text processing)

▶ Mixed models (e.g. Gaussian and Multinomial) for mixed quantitative/qualitative features

▶ ...
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Näıve Bayes (NB)

NB + QDA example

Mixture of K = 3 Gaussians

▶ Gaussian model : X |Y = k ∼ N (µk ,Σk) with Σk =

(
σ2
1k 0
0 σ2

2k

)
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Näıve Bayes (NB)

Näıve Bayes (NB)

Mixture of K = 3 Gaussians

▶ Classification rule : argmaxk=1,2,3 δk(x)

▶ quadratic boundaries {x ; δk(x) = δl(x)}

−4 −3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

X
1

X
2

 

 

1

2

3

24/ 27



Statistical Learning

Näıve Bayes (NB)

Näıve Bayes for non-parametric estimation

Non-parametric estimation of pk,j(xj) = p(xj |Y = k), where xj is the jth component of x

Empirical approach

p̂k,j(xj) =
#{xj,i ∈ V (xj) | yi = k}

nkλ

where Vλ(xj) is a neighborhood of xj with volume λ (and nk = #{yi = k})

Parzen kernel approach

p̂k,j(xj) =
1

nkλ

∑
i st yi=k

Kλ(xj , xj,i )

where Kλ is a given kernel, e.g. :

▶ 0-1 kernel : Kλ(x , xi ) = 1 if xi ∈ Vλ(x), 0 otherwise ← empirical approach,

▶ 1D Gaussian kernel : Kλ(x , x0) =
1√
2π
e
− 1

2λ2 (x−x0)
2

,

⇒ p̂k,j(xj) =
1

nkλ
√
2π

∑
i,yi=k e

− 1
2λ2 (xj−xj,i )

2
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Näıve Bayes (NB)

Kernel density estimation

1D estimation : X ∈ R
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▶ large λ w.r.t. to the dispersion of X → under-fitting

▶ small λ w.r.t. to the dispersion of X → over-fitting
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Conclusions

Conclusions

Generative models

▶ learning/estimation of p(X ,Y ) = p(X |Y ) Pr (Y ),

▶ derivation of Pr (Y |X ) from Bayes rule,

Different assumptions on the class densities pk(x) = p(X = x |Y = k)

▶ QDA/LDA : Gaussian parametric model
▶ performs well on many real-word datasets
▶ LDA is especially useful when n is small

▶ NB : independence of the feature X components given Y
▶ useful when p is very large (high dimension)

Perspectives

Discriminative approaches : direct learning of Pr (Y |X )
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