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Generative models

Generative models

Two kinds of approaches based on a model :

1. Discriminative approaches : direct learning of p(Y|X),
e.g. Regression, logistic regression <— next lecture

2. Generative models : learning of the joint distribution p(X, Y)

p(X, Y) = p(X| Y) PI’(Y),
N — N —
likelihood prior

e.g. linear/quadratic discriminant analysis, Naive Bayes < today’s lecture
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Generative models

Discriminant functions

For both model based approaches, Bayes classifier is defined as

" (x) = Pr(Y = k|X =
(x) = arg max Pr( |X = x)

> equivalent to consider a set of functions dx(x), for k € ), derived from a monotone
transformation of posterior probability Pr (Y = k|X = x)

» decision boundary between classes k and / is then defined as the set {x € X : dx(x) = di(x)}

Definition
0k(x) are called the discriminant functions of each class k

1 x is predicted in the ko class such that ko = arg maxxey x(x)
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Generative models

Generative models : Estimation problem

Assumptions
> classification problem with K classes: Y € Y = {1,..., K},
» input variables : X € R”

Bayes rule :

_ p(x|Y =k)Pr(Y =k)  p(x]Y =k)Pr(Y =k)

PriY = kX =x) p(x) TS Ay =) Pr(Y =)

In practice, the following quantities are unknown :
> densities of each class pi(x) = p(x|Y = k)
> weights, or prior probabilities, of each class mx = Pr (Y = k)

Estimation problem
These quantities must be learned on a training set :

learning problem < estimation problem in a parametric or not way
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Discriminant Analysis

Discriminant Analysis

Two kinds of Discriminant Analysis :

» Linear Discriminant Analysis

» Quadratic Discriminant Analysis
In both cases, the key assumption is that, within each class, the input variables X; are assumed to be
normally distributed.

Supplementary materials

O short (12mn) Sidney Univ. online video
https://www.youtube.com/watch?time_continue=719&v=D4C7YbfFQSk&feature=emb_logo

) Wikipedia page (quite complete and detailed)
https://en.wikipedia.org/wiki/Linear_discriminant_analysis

«2 short and simple Scikit-learn documentation (with examples)
https://scikit-learn.org/stable/modules/lda_qgda.html
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Quadratic Discriminant Analysis (QDA)

Supervised classification assumptions

> XeRP, YeY={1,...,K},
» sized n training set (X1, Y1),...(Xn, Ya)

QDA Assumptions
The input variables X, given a class Y = k, are distributed according to a parametric and Gaussian

distribution :
1 D N ot YOV
X|Y: k ~ N(/Jfkvzk) =N Pk(X): We 5 (=) "X (x— k)

The Gaussian parameters are, for each class k =1,..., K
» mean vectors ux € RP,
> covariance matrices ¥ € RP*P,
1= set of parameters Ok = {uk, Xk}, plus the weights 7y, for k =1,... K.
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Example

Mixture of K = 3 Gaussians
> Y e {1,2,3}
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Discriminant Analysis

L Quadratic Discriminant Analysis (QDA)

Example

Mixture of K = 3 Gaussians

> Y {123}
> X € R?

15 L L L L L L )
-4 -3 -2 -1 0 1 2 3

True mean p, and covariance X, parameters, for k =1,2,3
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QDA parameter estimation

Log-likelihood
For the training set,

£(917 e ,9}(,71'1, e 77TK—1) = Ing((Xl,yl), HR) (Xn,yn)),
= Z log p((xi,yi)), < i.i.d. training set,
i=1
= log[p (xilyi) Pr(y)],
i=1
= Z log [y, py; (xi; 0,)]-

i=1

Rk:mxk=1-— ZJK;II mj is not a parameter
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L Quadratic Discriminant Analysis (QDA)

QDA parameter estimation (Cont'd)

Notations

» n, = #{y; = k} is the number of training samples in class k,

> Zy,-:k is the sum over all the indices i of the training samples in class k

(Unbiased) Maximum likelihood estimators (MLE)

~ Nk .
» 7T = —, < sample proportion
n
~ Dok Xi
» Ly = ———, < sample mean

Nk

= o~ —~ T .
> 3, = ﬁ >y« (i — k) (xi — k)", « sample covariance
Rk : ﬁ is a bias correction factor for the covariance MLE (otherwise %)
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QDA decision rule

The classification rule becomes
f(x) = Pr(Y = kX =x,,0,7
(x) = arg max r( | x,,0,7),

=arg Tea;}(log Pr(Y = k|X = x,0,7),

Sk(x)
where

1 EN 1 TS ~ ~
5(x) = 5 log jzk‘ — S(x = ) TEL (x — i) + log i + -6,
is the discriminant function

Remarks
1. different rule than the Bayes classifier as 6 replaced by 0 (and 7 replaced by 7)

2. when n>>p, 0 —6 (and T — 7) : convergence to the optimal classifier if the Gaussian model is
correct...
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Discriminant Analysis

Quadratic Discriminant Analysis (QDA)

QDA decision boundary

The boundary between two classes k and / is described by the equation

Sk(x) = 81(x) & Gy + Lix +x" QL ;x =0, < quadratic equation

where
1 |§k| %k lAT"‘71A 1AT"71A
> Cy=—zlog—=+log — — ik = —h X < scal
ol 5 log 5 +log = — Sk i ik + S X, scalar

> Ly =2 ik — 2
1 o o
> Qi = > (—):k R 3 1), < matrix in RP*?

+ vector in R”

= Quadratic discriminant analysis
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QDA example

Mixture of K = 3 Gaussians

» Estimation of the parameters

4

3.5

fik, Sk and Ay, for k =1,2,3

W N =

true parameters
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QDA example

Mixture of K = 3 Gaussians

» Estimation of the parameters [ix, $4 and &y, for k = 1,2,3

4r

<& 00
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3.5

estimated parameters
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QDA example (Cont'd)

Mixture of K = 3 Gaussians
» Classification rule : arg maxx=1,,3 o« (x)
» Quadratic boundaries {x; dx(x) = d;(x)}
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Linear Discriminant Analysis (LDA)

LDA principle

LDA Assumptions

Additional simplifying assumption w.r.t. QDA : all the class covariance matrices are identical
(“homoscedasticity”), i.e. Xx =X, for k=1,..., K

(Unbiased) Maximum likelihood estimators (MLE)

» 7, and jix are unchanged,

> 5= e E,’le 2k (i — H) (i — fik)", < pooled covariance
1

Rk : —L- is a bias correction factor for the covariance MLE (otherwise 1)

LDA discriminant function

1 el 1 \Te— . ~
dk(x) = ) log ‘Z‘ - E(X — k) "N (x — Jik) + log Wk +-Cst,
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Linear Discriminant Analysis (LDA)

LDA decision boundary

The boundary between two classes k and / reduces to the equation

8k(x) = 8i(x) & Gy + Li;x =0, < linear equation

where R
> Cy=log %‘ - %ﬁ[f‘lﬁk + %ﬁff_lﬁ/, < scalar
> L= $! (fik — 1), < vector in R?
> Qi =0,

= Linear discriminant analysis
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Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA)

Mixture of K = 3 Gaussians

» Estimation of the parameters jix, 7k, for k =1,2,3, and 3
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Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA)
Mixture of K = 3 Gaussians

» Classification rule : arg maxx=1,,3 o« (x)
» linear boundaries {x; dx(x) = d;(x)}
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Discriminant Analysis

Linear Discriminant Analysis (LDA)

Complexity of discriminant analysis methods

Effective number of parameters
> LDA: (K—1)x (p+1)= O(Kp)
> QDA : (K —1) x (@ + 1) = O(Kp)

Remarks

» in high dimension, i.e. p &~ n or p > n, LDA is more stable than QDA which is more prone to
overfitting,

» both methods appear however to be robust on a large number of real-word datasets
» LDA can be viewed in some cases as a least squares regression method

> LDA performs a dimension reduction to a subspace of dimension < K — 1 generated by the
vectors zx = X *(fix — fik)  dimension reduction from p to K — 1!
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Naive Bayes (NB)

NB classifiers
Family of " probabilistic classifiers” based on applying Bayes' theorem on a generative model, with
strong (naive) independence assumptions between the features.

Can be coupled with
» parametric models (Gaussian, Bernoulli, Multinomial,...) with maximum likelihood estimation

» or non-parametric models with kernel density estimation

Supplementary materials
) Wikipedia page (quite detailed) https://en.wikipedia.org/wiki/Naive_Bayes_classifier

«& short and simple Scikit-learn documentation
https://scikit-learn.org/stable/modules/naive_bayes.html
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Naive Bayes (NB)

General assumptions

> X =(X,...,X,) ERP, Y €Y ={1,...,K},

NB Assumption
Simplifying assumption : given Y, the components Xi, ..., X, are assumed to be independent :

P
p(x) = [ [ pri)-
j=1
Remarks

» independence reduces one estimation problem in p dimensions to p much simpler 1D estimation
problems <— prevent from curse of dimensionality

> independence assumption is naive, i.e. not realistic in practice... but yields efficient/stable/robust
approaches especially in high dimension!
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Naive Bayes for parametric estimation

Gaussian model
> NB + QDA : X|Y = k ~ N(uk, X«), where the ¥, are diagonal, for k =1,..., K
> NB + LDA : X|Y = k ~ N (fk, X), where X is diagonal,

Other classical parametric models
» Bernoulli NB for binary events models (e.g., word occurence vectors in text processing)
» Multinomial NB for multiple events models (e.g., word count vectors in text processing)

» Mixed models (e.g. Gaussian and Multinomial) for mixed quantitative/qualitative features
> .
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NB 4+ QDA example

Mixture of K = 3 Gaussians

» Gaussian
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model : X|Y = k ~ Nk, Tk) with T4 = (”lk
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estimated parameters
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Naive Bayes (NB)

Mixture of K = 3 Gaussians

» Classification rule : arg maxx=1,,3 o« (x)
» quadratic boundaries {x; dx(x) = d;(x)}
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Naive Bayes for non-parametric estimation

Non-parametric estimation of px j(x;) = p(xj|Y = k), where x; is the jth component of x

Empirical approach
pirical app ooy i € V() lyi = k}
pkaJ(XJ) - nk)\

where Vi\(x;) is a neighborhood of x; with volume A (and nx = #{y; = k})

Parzen kernel approach

i) =— > Kalx.%.)

Isty, k

where K} is a given kernel, e.g. :
> 0-1 kernel : Kx(x,x;) = 1if x; € VA(x), O otherwise <~ empirical approach,

» 1D Gaussian kernel : Kx(x,x0) = Te g3z (x=x0)? ,

Ly (x—x,1)?

= ﬁk,J(XJ) "kx\/ﬁz iyi= ke 2)\
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Kernel density estimation

1D estimation : X € R

0.5¢
x  Donnees X
0.45f A=1/4
— =1
0.4F — =2

Complexity parameter A (kernel bandwidth)
» large A w.r.t. to the dispersion of X — under-fitting

» small A w.r.t. to the dispersion of X — over-fitting
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Conclusions

Generative models
> learning/estimation of p(X, Y) = p(X|Y)Pr(Y),
» derivation of Pr(Y|X) from Bayes rule,

Different assumptions on the class densities px(x) = p(X = x|Y = k)

» QDA/LDA : Gaussian parametric model

» performs well on many real-word datasets
» LDA is especially useful when n is small

» NB : independence of the feature X components given Y
> useful when p is very large (high dimension)

Perspectives
Discriminative approaches : direct learning of Pr(Y|X)
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