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Statistical Learning

L Unsupervised classification : clustering

Unsupervised classification

Assumptions
> X eRP, Ye{l,...,K}+ K classes

» Training set (z1,...,2n) < unknown outputs y;

Example (p =2) 4
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Statistical Learning

L Unsupervised classification : clustering

Unsupervised classification : Clustering
Objectives

» grouping similar data in the same cluster < clustering
= For each x;, 1 < i < n, predict the class variable Y; € {1,..., K}

Example (p =2) 4

o ¥l
3k o ¥=2
o ¥=3
2r o Yt
o Y75
1k
< 0f
—1r
2"
-3r
4 . . . . . . ,
-2 -1.5 -1 -0.5 0 0.5 1 1.5

True classes y; for data z; (K =5)
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Statistical Learning
L Unsupervised classification : clustering

Clustering limitations

Combinatorics problem
» Number of partitions into K classes for a sized n dataset : Stirling
number of the 2nd kind S(n, K)
» Number of partitions for a sized n dataset : Bell number
B, = 22:1 S(n, k)
dataset size n 2 5 10 100 200
S(n,2) (K =2classes) | 1 15 511 6.3 x 1029 8.0 x 10
0

S(n,4) (K = 4 classes) 10 34105 6.7 x 10%® 1.1 x 1019
Bn 2 52 115975 4.8 x 1011° 6.2 x 10275

> Remember ~ 105 atoms in the Universe...
Pb : Exhaustive search (brute-force) not possible in practice

i Jocal search around initial solutions/values — sub-optimal

Estimation problem and model selection

» possible parameters are unknown < estimation

» Number of classes K possibly unknown < model selection
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Statistical Learning
I~ Mixture model

Mixture of distributions

» Data Xi,...,X, assumed to be i.i.d. with pdf f

» f is modeled as a mizture of distributions
K
f@) =" 7o (w;0r)
k=1

» m1,..., T are the relative sizes (Zi{:l 7, = 1) of the classes :
Pr (YZ = k) = Tk

» density ¢ is the parametric shape of a class,

» parameters 61,...,0x are the centroids of the classes/clusters

Latent variable
Y €{1,..., K} indicating the class of the r.v. X

» Y ~ discrete distribution s.t. Pr(Y; =k)=m,, k=1,...,K
> X|Y =k ~ distribution with pdf ¢ (:|6x)
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Statistical Learning
L Mixture model

Gaussian mixture model

> Class centroid : 8 = (p < mean, ¥ < covariance matrix)
» Density ¢ of a class : multivariate normal distribution A (u,X) pdf

s, %) = (et ()2 exp (=0 = ) = @ = )

> Mixture density  f(z) = S r, T (2 p1re, T
Example (p =2, K =5)

X -2 -15 -1 -0.5 0 0.5 1 15

Mixture density f n = 500 realizations



Statistical Learning

L Cost based clustering : K-means

Cost based approximation : K-means

Pb : no simple expression of the Gaussian mixture parameter estimators

= geveral approximations can be conducted to obtain a simple
deterministic cost criterion

First approximation : euclidean distance

Replace the Mahalanobis distance in the Gaussian density by the simpler
euclidean one

(@ =) S (@ — ) = lle —pell®, (e S = 1),

= cluster centroid for the kth class reduces to 0, = pi < mean vector
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Statistical Learning

L Cost based clustering : K-means

Cost based approximation : K-means (Cont’d)

Pb : no straightforward expression of the Gaussian mixture parameter
estimators

= several approximations can be conducted to obtain a simple
deterministic cost criterion

Second approximation : hard thresholding
Binarize the posterior probabilities : for each data point z;,

1 ifk= i P —
ti,k =Pr (Y1 = k|$z,6) = ! a.rg Mtk ||$ Ml”’
0 otherwise.
Csq : x; belongs with certainty to the class whose centroid is the closest
1= hard thresholding clustering

5 deterministic model
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Statistical Learning

L Cost based clustering : K-means

Cost criterion : K-means clustering

Notations
For a given clustering Y, let

» n, =F#{i|Y: =k} is the size of the kth cluster,

> L = % Zz‘m:k x; is the sample mean of the points assigned in the

kth cluster

Under the previous approximations, maximizing the resulting

“log-likelihood” reduces to the following optimization problem :

K-means cost criterion

n
D tawllw — el

i=1

Minimize

= 11-

i — Ak,

Bl
Il
-

i|Y; =k

e J(Y) is the sum of within-cluster dispersions
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Statistical Learning

L Cost based clustering : K-means

Equivalent cost criterion

(negative) Sum of between-cluster dispersions

K
JY)=— Z nx||fix — m||* + constant,
k=1

ST o U
where m = ~ >7"" | x; is the total mean.

1= Minimizing the within-cluster dispersion < Maximizing the
between-cluster dispersion

ww General property of clustering algorithms

Proof : let Sr =377, (z; — m) (z; —m) = 31, iy Iz — m||? be the
total dispersion.

» Replace x; by x; — ik + jir, and expand St

» Show that St = J(Y) + Zszl ng ||k — m||* (ie. the cross product
equals zero), and conclude by noting that St does not depend on Y
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Statistical Learning

L Cost based clustering : K-means

K-means : cost criterion optimization

Enlarged optimization problem
win J (Y, 1) = S S el
k=1 i|Y;=k >

» Jk is the quadratic error for the kth cluster

Remarks
» For a given Y, min, J(Y,u) = J(Y,n) = J(Y)

> For a given u, exchanging Y; = k with Y;* = [ changes the two
quadratic errors

i = Jk = o — e ?,

']l* :Jl+||$i—/tl||2,,

Thus J(Y, ) is decreased if
JI = <Jk—Ji

< o —wll® <l — el
&z is closer  (euclidean distance) from the class [ center,
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Statistical Learning
L Cost based clustering : K-means

K-means algorithm (LLoyd’s algorithm)

» Require : K the number of clusters,

> Initialization : Set the centroid ug, 1 < k < K, to a starting value u,go),

> For t =1 — ... until convergence (i,e. MS) = ,ugffl))
1. Assignment step : assign z; to the class of the closest center

vy = arg min T; — )H2 fori=1 n
i b 7 M s RN}

=1,...

“ (t—1

2. Update step : update the centroids pug, for k=1,..., K
1

t .
) = arg min Do el == Do =
iy =k "y =
ie. p,l(:) is the sample mean of the kth cluster
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Statistical Learning

L Cost based clustering : K-means

Convergence of K-means algorithm

Convergence
» each step decreases the criterion,
» there is a (huge) finite number of partitions,
1= the algorithm converges to a solution (in a finite number of steps)

But no guaranty of the solution optimality (depend on the initialization)...

Stopping criterion

K-means usually very fast for a small/moderate number of clusters K, but
» running time increases with the number of clusters K
» in the worst case, can be very slow to converge even for K = 2,

Thus, to shorten the computational time, the algorithm can be stopped
when the cost criterion does not decrease significantly
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Statistical Learning

L Cost based clustering : K-means

Variants/Improvements of K-means algorithm

Initialization heuristics
» Forgy method

» pick randomly K observations from the dataset as initial centers,

» run K-means algorithm with these starting values

> repeat these 2 steps several times and retain the best (cost sense)
clustering

» lot of variants : Random partitions, k-means++, power init.
= may lower the computation time of one run,

= can give some guaranties that the solution is competitive w.r.t. to the
optimal one.

Choice of the distance -see also later-
> Standard K-means based on the squared ¢2 (euclidean) distance.

» Other distance can be considered : e.g. using ¢; distance yields the
K-medians algorithm where the cluster centroid becomes the median
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Statistical Learning

L Cost based clustering : K-means

K-means initilization

Sensitivity to initialization/data geometry/number of classes

X = initial centers e = final centers
a) set of points z; € R? (p = 2) to classify, b) and c¢) two clusterings in
K = 2 classes with different initial centers, d) clustering in K = 3 classes.
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L Cost based clustering : K-means

K-means

Prediction vs Clustering

LDA (supervised approach)

» the points z1, ...
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K-means with K = 3 classes

, Tn, are grouped according to the color of the regions

» Prediction : performance on new data is what matters

» Clustering : performance on current data is what matters
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Statistical Learning
L Model based clustering : EM algorithm

EM (Expectation-Maximization) algorithm

EM method is a general and important tool of statistical analysis :

» method for finding maximum likelihood (ML) or maximum a posteriori
(MAP) estimates of parameters in statistical models, by maximizing
iteratively the log-likelihood

» introduction of unobserved latent variables Z to decompose the
optimization problem in simpler sub-problems in an iterative way

» EM iteration alternates between performing an expectation (E) step,
and a maximization (M) step
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Statistical Learning
LModel based clustering : EM algorithm

EM (Expectation-Maximization) principle

» 7 is a latent variable,

> Objective : maximize £(0) = logp(z|0)

Sketch of EM algorithm

> E step : compute the expectation of the completed log-likelihood
function evaluated using the current estimate for the parameter

Q (67 e(t_l)) = EZ|X,0(t—1) [10gp($, Z|0)] ’
= /p(z|m, G(t_l))logp(m,z|0)dz
» M step : compute parameters maximizing the expected log-likelihood

(t) _ (t—1)
0 —argmgme(@,@ ),

» Repeat until convergence of the oM sequence
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Statistical Learning
L Model based clustering : EM algorithm

Application of EM to mixture models : E step

Introducing the latent variables Y;, or equivalently, the binary variables

1 ifY; =k,
Zik =
0 otherwise,

the likelihood completed with the r.v. z;; reads

n n K
p(@,. . @n, 2(0) = [ [ p(wi, 210) = TT ] mao(aslon) ™,
i=1

i=1k=1
= logp(z,...,zn,2|0) = S0 S8z log [meg(zi|6r)],
= Q(0.0071) = T DI B [l 0470 og (meg(wil6n)

(Vg (ail0 D)
S e (ailet-D)

where 17" = Pr (Yi =k ‘m,&“*”)
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Statistical Learning
L Model based clustering : EM algorithm

Gaussian mixture models : M step
Find 6 = #"Y maximizing Q (0, 0(’&71)) =y 3K, tsc_l) log [ ¢ (x:|0k)]

» For any mixture model (i.e. Vo) :

w_ 1 (t-1)
Ty = n Ztik

i=1

» For a Gaussian mixture model 6 = {ux, Xx} and

t—1
o _ Tty i

My, —1
St
T
-1
o T () (= )
k} f—

(t—1) )
> i tin

> empirical averages weighted by the posterior probability in 8¢~1,
th = Pr (Vi =k, 0070)

= soft-thresholding algorithm
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Statistical Learning
LModel based clustering : EM algorithm

EM algorithm for Gaussian mixture models

EM clustering
> Initialize 7.°), u(”, £ for k=1,..., K
» For t = 1,... until convergence
(E) fori=1,...,n, k=1,..., K, compute tgz_l) =Pr (Y =k| xi,O(t_l))
(M) for k=1,...,K, compute 71',(:), u,(:), El(:)

Prediction/Correction structure
» E step < prediction step
> M step < update/correction step

Convergence
» EM : convergence toward a local maximum of the log-likelihood

= 1o guaranty of convergence toward the optimal solution (depend on the
initial values)..
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LModel based clustering : EM algorithm

Gaussian mixture model and EM algorithm

Prediction vs Clustering
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X,
QDA (supervised approach) EM with K = 3 classes
» the points z1,...,z, are grouped according to the color of the regions

» Prediction : performance on new data is what matters

» Clustering : performance on current data is what matters

23/ 44



Statistical Learning
L-Model based clustering : EM algorithm

Gaussian mixture model and EM algorithm

Estimation of the mixture density f

True density of the data points
L1y yTn

x % -

Estimated density with EM (K =3
classes)



Statistical Learning

L Comparison K-means vs Algo EM

Comparison K-means vs Algo EM

2 classes with overlapping and very different dispersions (covariances Xj)

o =5 3 5 10 15 20 25 KN 5 0 5 10 15 20 25

Data x1,...,xn, classes and true Clustering with EM (K = 2) and
95% confidence regions estimated 95% confidence regions
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Statistical Learning

L Comparison K-means vs Algo EM

Comparison K-means vs Algo EM

2 classes with overlapping and very different dispersions (covariances Xj)

o -5

Data z1, ...

5 10 15 20 25

, Zn, classes and true

95% confidence regions

Classification with K-means

(K =2)

26/ 44



Statistical Learning
- Model selection

Model selection : estimation of K

Minimization of a penalized log-likelihood criterion

C(K) = —l(z; K) + pen(K,n)

» [(2;K) = l(z;0x, K) with 0k the MLE of the model parameters with
K classes (profile log-likelihood w.r.t K)

Trade-off between two terms to minimize
» —i(z; K) : fidelity to the data (likelihood)
» pen(K,n) : low complexity of the model
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Statistical Learning
- Model selection

Model selection : BIC criterion

Bayesian Information Criterion (BIC)
Asymptotic (n > mp) criterion for Bayesian models (i.e. with a prior on
the model parameters)

pen(K,n) = %mK log(n)

» n is the size of the data
» mpg is the effective number of parameters for the K class model

Equivalent to minimize the following criterion

BIC(K) = —2i(z; K) + mx log(n)
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Statistical Learning
L Model selection

Model selection : estimation of K

Example of synthetic data generated according to a mixture of K =3

Gaussians
4 o
as .
o8
OO
3 ooé)ooo o
25 © o O o ©
o %
NS
! 00 5585 08
& 9 3%xm
15 oo o ,°°
8 o
< O(@Qg 0% OO 9
1 o oo ¢ o
o % o vy 00
o
05 <o o0
£ 090 0 A ot
o % ° 2 08%
< 00, 0,
o o 000000§% o o o0 O
ol A .
©
s 3 o
- <
N o
474 -3 -2 -1 0 1 2 3

True density f

Dataset x1,...,2zn (n =500
realizations)



Statistical Learning
- Model selection

Model selection : estimation of K

1
Gaussian mixture : mxg = K—-1 4+ Kx p + K X pp+1)
N—\— ~~ 2
Ty TR —1 P \T
K

BIC criterion w.r.t. K

1820
1800
1780

2 1760
1740
1720

1700
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Statistical Learning

L Alternate dissimilarity measures

Dissimilarity measures

» Dissimilarity measures requires that

> d;; =0
> di; >0
> di; = dj

> Often d;; < dix, + di; is NOT satisfied V(i, 4, k) € [1,... N]?

rk1 : d may be sometimes required to be a true distance.

rk2 : From similarity s;; to distance or dissimilarity measure d;; : use any
decreasing function e.g.

dij = max(s;;) — Si
sij = exp(—dyj)
rk3 :

» Dissimilarity measure examples : Euclidean dist, Hamming dist (for
categorical variable), Symetrized KL

» Similarity measure example : scalar product, spectral angle, ...
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Statistical Learning

L Alternate dissimilarity measures

Generalizing KMEANS for alternate dissimilarity measures

Requires to generalize centroids to any dissimilarity measures : introduce Medoids
for each cluster (of index k) ; denoting the class label by y; = f(z;),
vk e{l,...,K}
Medy, = arg min Z d(x;, ;)
wilvi=k i/yi=k

rk1 : The assignment step remains as in the case of centroids.

rk2: If N is large (more precisely if Ny is large, i.e. the number of points in
cluster k), the computation of Med, may become computationally
demanding. Although l> norm is most popular, it does not apply for
categorical data, where medoids must be introduced.

rk3 : This generalization may be used in order to deal with Kernel trick
methods (see Florent’s lecture), allowing to deal with non convex clusters.
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Statistical Learning
L Alternate dissimilarity measures

Kernelized Kmeans —Optionnal—

Let k: X X X = R be a kernel such that 3H an Hilbert space and a
mapping ¢ : X — H, satisfying

V(II?i,IIZ]') € X x X7K‘(xi7xj) = <¢(ZIJ;),¢($])>H
» Expression the centroid in the KHS
e = Nik D flay=k (@) & e = argmin. 35 [[@(2) — z||?

» Assignment step wrt

||<1><m>—ck||2=< LS o@)o@-— 3 M,>

* fao=k * fao=k
2
= k(z,x) — N k(z, i) Z Z K(zi, ;)
¥ f@o=k NE oo k f(z;)=k

rk : Assignment does NOT request explicit knowledge of ¢
rk : Usually, as ¢ is not known, the centroids c; are NOT known
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L Alternate dissimilarity measures

Kernelized Kmeans, cont’d
rk : Kernel Kmeans allows to tackle problems with non convex classes

rk : Kernel Kmeans has increased sensitivity to initial conditions (random

initial labelling)

rk : Kernel expression requires some tuning parameter to be set.

I, KMEANS 2(;aussian Kernel KMEANS

PO A NI Y
IR ARE Y AN Y;
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Statistical Learning

L Evaluating clustering result

Evaluating clustering results

Unsupervised framework
= no ground truth is available, (in general).

e if a probabilistic model is used (such as EM) : likelihood of the test
set ?(does not really assess clustering discovered by the model)

e if Deterministic approach (such as Kmeans) : ? — how dense (or compact)
are the identified clusters, how well separated they are?

» For l2 distances, compare within-cluster variance with between-cluster
variance (remind that the sum is constant).

» For more general dissimilarity measures, popular quality indices
(among others) are

» Davies Bouldin index
» Silhouette index
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Statistical Learning

L Evaluating clustering result

Clustering Quality indices examples

Let Ci denote a cluster, k € [1, ..., K], and N = |Cx|, Med), its medoid
Davies Bouldin, DB
» Homogeneity T :

K
Ty = Nik ;k d(z,Medy) = T = % ;Tk
> Separability S :
2 S
Skt = d(Medi, Med)) = § = gy ; z;&zk o

» DBindex :

K
Ty +T) 1

Dy = :>DB=—E D

k= MaXg£] S K k
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Statistical Learning

L Evaluating clustering result

Clustering Quality indices examples, cont’d

Silhouette index, S

S is relative to each observation point z;, whose estimated label is y; = k.

» Average distance to other observations from the same cluster

a(x;) = ﬁ Z d(zi, ;)

J#4,5/yj=k

» Minimal distance of x; to the closest cluster

L Z d(xi, .'13[)

b(xz;) = min
() i#i.5/y;#k Ny

71 y=y;

» Silouette b) (@) 1
z) —a(z
S() maz(a(zx),b(z)) = N Z (z)
rkl :if Ny, =1, set S(x;) =0
rk2: -1 < S(z;) <1
rk3 : if S(x;) < 0, x; would be better labelled as a member of its
neighboring cluster. S(z;) ~ 0 if x; close to the border between clusters.
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L Evaluating clustering result

Clustering quality measure with expert (prior) knowledge

Assume that some labels are known ( ground truth {y;,i =1...N,},

yi € {1,..., R} is available) : leads to compare two partitions, i.e. the
estimated clustering ({f(z:),i =1...N)}, f(xs) € {1,..., K}) with the
ground truth partition. Note that labels may take different values for these
partitions.

1. RAND index

RI = Z Z a(f F(z3))0(ys = yj)+0(f () # f(2))0(ys # y5)

=1 j=i+1

rk1 : This is the proportion of observations pairs that are either from the
same known class and have identical estimated labels, or belong to different
classes and have different estimated labels.

rk2: 0< RIL1
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L Evaluating clustering result

Clustering quality measure with expert knowledge, cont’d

2. Purity index P
Assume a ground truth partition {Cx,k =1,..., K}. Let

w N _ #(f(z:) = K)in C

Ny #(f(zi) = k)

then 4
Pk éf mlaxpkl

% L

rk1 : pr; is the proportion of observations whose estimated label is k, that
are in class C;.

2\2

rk2 : Py is this latter proportion, for the class C; which contains the more
observations with label f(z;) = k — if C; matches with cluster k, then
P, =1.
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L Evaluating clustering result

Clustering quality measure with expert knowledge, cont’d

3. (Normalized) Mutual information between two clusterings, (IN)IM

Let Y = {U1,...,Ur} and V ={V4,...,Vk}
puv (i, ) Plr € Uiz € ;] = 120V
. e U;
puli) < %
then

MU, V)= ZZPUV(Z 7) logM

P vt Py (i) Py (5)
or NIM(U,V) = 4555, where H(U) =

— R | Py(i)log Py(i)
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LHierarchical clustering

Hierarchical approaches

Motivations
e Recursive approach to partition data at all possible scales, using
multi-level hierarchical partitioning

>

>

Each labeling operation does not rely on a single operation, but on a
sequence of conditional tests,

Each operation may use a single or a subset of variables (or
characteristics) of the data whereas other methods give the same
importance to all variables,

Allow that different variables are used in different locations in the
observation space

Provide some insights on the relevance of variables for clustering,
classification of prediction tasks

A hierarchical (unsupervised) clustering approach does not require the
number of clusters K to be known in advance
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LHierarchical clustering

Clustering : Dendogram

Hierarchical clustering : Dendogram

A dendogram is a Tree

>

>

whose root contains all
observations

with IV leaves containing a
single observation

where two clusters with the
same parents are merged at
upper level into a single cluster

where a cluster s split into two
children at lower level.

= Intermediate nodes contain
the relevant information

the length of a branch is
proportional to the
dissimilarity between the
connected clusters

Thresholding the dendogram
at different levels issues
different clustering ((1) or (2))

LEAVES , with labels

gibbon
orangutan
gorilla

human

pigmyChimpanzee

chimpanzee
baboon

rat
fatDormouse
fruitBat
finWhale
blueWhale
harborSeal

grayseal

DENDOGRAM Example : LZ distances on genetic code

‘2
| @

2 25
DISSIMILARITY MEASURE
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LHierarchical clustering

Dendogram construction

Dendogram Construction

Divisive, or ”top-down”
- Start from root and divide into two cluster wrt a splitting stategy
- Entropy (*)
- Variance
- Davies-Bouldin
- Silhouette
- ... see section on Clustering Quality indices

Agglomerative, or ”bottom-up”

- At each iteration, find the closest cluster to each others and merge them.
- Iterate until all observations are in a single cluster.
= requires to define closeness measure between clusters

Entropy estimation is difficult in general and uses pdf estimators. Alternate
methods use length of quasi additive graphs...
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LHierarchical clustering

Dendogram construction

Dendogram Construction, cont’d

Linkage functions : Mostly for agglomerative approaches, measure
closeness/distance between clusters

e Requires a distance function d(.,.) on {X} is defined.
> Single linkage

ds; Cr,C)) = min  d(z, 2’
szngle( k l) 2ECy .3 €C) ( )
» Complete linkage
d, Ck,Cy) = max  d(z,x’
complete( k> l) z€Cr.a €C, ( ) )

> Average linkage

daverage(ckvcl) ‘C ||Cl| Z Z da: 1)

z€Cy ' €Cy

» Centroidal linkage

deentroidal (Cka Cl) (

1 !
o S i 2

z€Cy L z'eCy
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LHierarchical clustering

Dendogram construction

Dendogram Construction, cont’d

Choosing K

» By setting the height of the line or level in the dendogram
» By choosing K to get e.g. the best silhouette coefficient.

Computational cost
As the all set of pairwise distance (must)(*) be computed, computational

cost goes like O(pN?) if  has p features.
= not well adapted to massive data

(*)
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