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Statistical Learning

Organization

Organization

Volume

▶ 2 × 2h lecture session

▶ 6 × 2h lesson + Lab session

▶ Evaluation : 75% exam (2h) + 25% lab reports

Objectives

▶ model/algorithm analysis for supervised/unsupervised learning

▶ assess the quality of predictions and inferences

▶ application of these algorithms on different datasets (geosciences, bioinformatics, vision, etc ...)
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Organization

Program

Lectures

S1 Introduction and fundamental ML tradeoff

S2 ML Basics

Labs

S3 ML basics, k-NN, model assesment

S4 Discriminant Analysis

S5 Linear models

S6 Support Vector Machine and Kernel methods

S7 Unsupervised classification : clustering

S8 Decision Trees and Random Forests
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Organization

The material

▶ Slides (pdf) and notebooks available here :
https://gricad-gitlab.univ-grenoble-alpes.fr/chatelaf/ml-sicom3a/

▶ Jupyter notebooks are available to illustrate concepts and methods in Python (.ipynb files)

▶ Jupyter-hub servers or Binders are also available to run them remotely and interactively (no need
to install Python and its dependencies, see README.md)

Homeworks

▶ check the instructions for the next session : see README.md file on the gitlab repo (updated
after each session)
https://gricad-gitlab.univ-grenoble-alpes.fr/chatelaf/ml-sicom3a

▶ prepare the course at home by reading the materials according to instructions

▶ during the session : short recap - Q/A - quiz + illustrations and examples on machines (labs)
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What is machine learning ?

Machine Learning ⊂ Artificial Intelligence
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Statistical Learning

What is machine learning ?

Data Science Objective

How to extract knowledge or insights from data ?

Learning problems are at the cross-section of several applied fields and science disciplines
▶ Machine learning arose as a subfield of

▶ Artificial Intelligence,
▶ Computer Science.

Emphasis on large scale implementations and applications : algorithm centered
▶ Statistical learning arose as a subfield of

▶ Statistics,
▶ Applied Maths,
▶ Signal Processing, . . .

Emphasizes models and their interpretability : model centered

☞ There is much overlap : Data Science
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What is machine learning ?

Learning problem
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What is machine learning ?

Learning : human vs machine

The learning of a child

▶ walking : 1 year

▶ speaking : 2 years

▶ reasoning : the rest of the time
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Statistical Learning

What is machine learning ?

Definitions of Learning

Machine Learning in Computer Science

Tom Mitchell (The Discipline of Machine Learning, 2006)

A computer program CP is said to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P, improves with experience E

Key points

▶ Experience E : data and statistics

▶ Performance measure P : optimization
▶ tasks T : utility

▶ automatic translation
▶ playing Go
▶ ... doing what human does
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What is machine learning ?

Experience E : the data !

Type of data : qualitatives / ordinales / quantitatives variables

text strings

speech time series

images/videos 2/3d dependences

networks graphs

games interaction sequences

...

Big data (volume, velocity, variety, veracity)

Data are available without having decided to collect them !

▶ importance of preprocessings (cleaning up, normalization, coding,...)

▶ importance of a good representation : from raw data to vectors

11/ 31



Statistical Learning

What is machine learning ?

Objective and performance measures P

Generalize

▶ Perform well (minimize P) on new data (fresh data, i.e. unseen during learning)

▶ “Statistical learning” : derive good (P/error rate) prediction functions

A fish A fish

12/ 31



Statistical Learning

What is machine learning ?

Objective and performance measures P

Generalize

▶ Perform well (minimize P) on new data (fresh data, i.e. unseen during learning)

▶ “Statistical learning” : derive good (P/error rate) prediction functions

A fish A fish

12/ 31



Statistical Learning

What is machine learning ?

Examples of Tasks

Recognition of handwritten digits (US postal envelopes)

☞ Predict the class (0,...,9) of each sample from an image of 16× 16 pixels, with a pixel intensity
coded from 0 to 255

▶ Low error rate to avoid wrong allocations of mails !

Supervised classification
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Examples

Examples of Tasks

Spams Recognition

☞ Define a model to predict whether an email is spam or not

▶ Low error rate to avoid deleting useful messages, or filling the mailbox with useless emails

supervised classification
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Examples

Examples of Tasks

Disaggregation/Prediction of appliance’s, or industrial, load

☞ Individual appliance recognition from load curves

☞ Predict the energy consumption

supervised or unsupervised classification or regression
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Examples

Examples of Tasks

DNA-microarrays

▶ Genes expression dataset fore several thousand individual genes (columns) and tens of samples
(rows)

☞ Classification of genes (resp. samples) with similar expression profiles across samples (resp. genes)

unsupervised classification
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Examples

Examples of Tasks in Geosciences

Prediction of El Niño southern oscillation

☞ Predict, 6 months in advance, the intensity of an El Niño Southern Oscillation (ENSO) event from
ocean-atmosphere datasets (sea level pressure, surface wind components, sea surface temperature,
surface air temperature, cloudiness...)

supervised regression
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Examples

Prediction of pollutant concentrations

☞ Predict pollutant concentrations (03,N02,PM10,PM2.5) at time D0+1,+2,+3 from hourly
measures timeseries + weather data + chemistry based forecasting models

supervised regression (pollutant concentration predicton) / classification (pollution alert or not)
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Examples

Prediction of Green-ER electrical consumption

☞ Predict electrical consumption (heating, air conditioning, electrical outlets, or global
consumption...) at various time horizons from hourly measures timeseries + weather data +
possible Green-ER occupancy data

supervised regression

19/ 31



Statistical Learning

Definitions

Definitions

Variable terminology

▶ observed data referred to as input variables, predictors or features ← usually denoted as X

▶ data to predict referred to as output variables, or responses ← usually denoted as Y

Type of prediction problem : regression vs classification

Depending on the type of the output variables

▶ when Y are quantitative data (continuous variables, e.g. ENSO intensity index values) ←
regression

▶ when Y are categorical data (discrete qualitative variables, e.g. handwritten digits
Y ∈ {0, . . . , 9}) ← classification

Two very close problems.
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Definitions

Prediction problem

Assumptions

▶ couples of input and output variables (Xi ,Yi ) are i.i.d.

▶ input variables Xi are vectors in Rp :

Xi = (Xi,1, . . . ,Xi,p)
T ∈ X ⊂ Rp

▶ output variables Yi take values :
▶ in Y ⊂ R (regression)
▶ in a finite set Y (classification)

Prediction rule
function of prediction / rule of classification ≡ function f̂ : X → Y that estimate the true link
function f to get predictions of new elements Y given X

Ŷ = f̂ (X )
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Definitions

Supervised or unsupervised learning

Training set ≡ available sample T to learn the prediction rule f

For a sized n training set, different cases :

▶ Supervised learning : T ≡ ((X1,Y1), . . . , (Xn,Yn)) input/output couples are available to learn the
prediction rule f

▶ Unsupervised learning : T ≡ (X1, . . . ,Xn) only the inputs are available

▶ Semi-supervised : mixed scenario (often encountered in practice, but less information than in the
supervised case)

During this course :

▶ most courses and labs devoted to supervised learning (more interpretable results, abundant
literature)

▶ S6 devoted to unsupervised learning, namely clustering
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Simple approaches to prediction

Binary classification

Toy 2D data set (two features X1 and X2) for binary classification (two classes)

1 0 1 2 3
x1

2

1

0

1

2

3

x 2

▶ each sample (X1,X2) in the dataset is plotted as a 2D point where the two features X1 and X2 are
displayed along the abscissa and ordinate axes respectively

▶ the binary class label Y is displayed as a color mark (e.g., yellow or purple)
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Simple approaches to prediction

Simple linear model for classification

We seek a prediction model based on the linear regression of the outputs Y ∈ {−1, 1} :

Y = β1X1 + β2X2 + ϵ,

where β = (β1, β2)
T is a 2D unknown parameter vector

Learning problem ⇔ Estimation of β

Least Squares Estimator β̂ = (β̂1, β̂2)
T : minimize the training error rate (quadratic cost sense)

RSS(β) =
N∑
i=1

(Yi − β1Xi,1 − β2Xi,2)
2

Classification rule based on least squares regression

f̂ (X ) =

{
1 if Ŷ = β̂1X1 + β̂2X2 ≥ 0,

−1 otherwise

Notebook N1 Linear Classification.ipynb

24/ 31



Statistical Learning

Simple approaches to prediction

Model complexity

Most of methods have a complexity related to their effective number of parameters

Linear classification : model order p

E.g. dth degree polynomial regression : p = d + 1 parameters βk s.t.

Y = β0 + β1x + β2x
2 + . . .+ βdx

d + ϵ,

= Xdβd + ϵ,

where

Xd =
[
1, x , x2, . . . , xd

]
,

βd = [β0, β1, β2, . . . , βd ]
T .
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Simple approaches to prediction

Linear regression : complexity vs stability

Polynomial degree d influence ← over-fitting issue
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Simple approaches to prediction

Linear Regression : Test error vs Train Error

Error rate vs polynomial order d
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▶ True error rate (i.e. error rate for test data not
used for learning) minimized when d = 2 ...

▶ ... true generative model : order d = 2 polynomial
(+ white noise)

☞ Training error always decrease with the model complexity. Can’t use alone to select the model !
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Simple approaches to prediction

Binary classification : Test error vs Train Error

Notebook : N2 Polynomial Classification Model Complexity.ipynb
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Error rate vs polynomial order d (see
Notebook)

▶ Training error rate (i.e. error rate for train data
used for learning) minimized when d = 19

▶ Test error rate (i.e. error rate for test data not
used for learning) minimized when 3 ≤ d ≤ 7 ...

☞ Training error always decrease with the model complexity. Can’t use alone to select the model !
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Simple approaches to prediction

Model Selection

Fundamental trade-off

▶ too simple model (high bias) → under-fitting

▶ too complex model (high variance) → over-fitting
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Simple approaches to prediction

Fundamental Bias-Variance trade-off

if the true model is
Y = f (X ) + ϵ,

then for any prediction rule f̂ (X ), Mean Squared Error (MSE) expresses as

E

[(
Y − f̂ (x)

)2
]
= Var

[
f̂ (x)

]
+ Bias

[
f̂ (x)

]2
+Var [ϵ]

▶ Var [ϵ] is the irreducible part

▶ as the flexibility of f̂ ↗, its variance ↗ and the bias ↘
☞ overfitting/underfitting trade-off
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Simple approaches to prediction

Overview of Bias-Variance
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