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LSuppovt Vector Machine (SVM)

Support Vector Machine (SVM)

Theory elaborated in the early 1990’s (Vapnik et al) based on the idea of 'maximum margin’
» deterministic criterion learned on the training set < supervised classification
= general, i.e. model free, linear classification rule

w classification rule is linear in a transformed space of higher (possible infinite) dimension than the
original input feature/predictor space

Supplementary materials

@ Coursera online video with python notebook material (13mn)
https://www.coursera.org/lecture/data-analytics-accountancy-2/
introduction-to-support-vector-machine-dDPOv

) Wikipedia page (quite complete and detailed)
https://en.wikipedia.org/wiki/Support_vector_machine

«& Short and easy to understand Scikit-learn documentation (with examples)
https://scikit-learn.org/stable/modules/svm.html
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LSuppovt Vector Machine (SVM)
Separating Hyperplane
:

Linear discrimination and Separating hyperplane

Binary classification problem

> XeRP
> Ye {-1,1} + 2 classes
» Training set (x;, yi), for i=1,...,n

Defining a linear discriminant function h(x) < defining a separating hyperplane H with equation

i

x'B+p0 =0,
H: z'B+p=0

» 3 € RP is the normal vector (vector normal to the hyperplane H),
> [o € R is the intercept (regression interpretation) or offset (geometrical interpretation)

w H is an affine subspace of dimension p — 1
w h(x) = x" B + Bo is the associated (linear) discriminant function

3/ 47



Statistical Learning
Support Vector Machine (SVM)
Separating Hyperplane

Separating hyperplane and prediction rule

For a given separating hyperplane H with equation

7
x'B+ Bo =0,
H: x"B+B,=0

the prediction rule can be expressed as
> y=+1,if h(x) = x"B+ B0 >0, (x is above H)
> y = —1, otherwise, (x is below H)

or in an equivalent way:
Y= G(x) = sign [XT,B + 50]

Rk: xisin class y € {—1,1}: prediction G(x) is correct iff y(xT,E)' +B0) >0
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Separable case

Separating Hyperplane: separable case

Linear separability assumption: 38 € R? and S € R s.t. the hyperplane x"8 + 8o = 0 perfectly
separates the two classes on the training set:

yk(ka,B—i-ﬂo) >0, fork=1,...,n,

Separable case (p = 2 example)
25

+
ol
15 -
1k Pb: infinitely many possible perfect
05 - separating hyperplanes
o 0f x'B+ o =0
= os | = Find the 'optimal’ separating
4l hyperplane?
15 |
P
25 F ‘ ‘ ‘ ‘ ‘ ‘
3 2 1 0 1 2 3
X
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Separable case

Separating Hyperplane: separable case

Linear separability assumption: 38 € R? and S € R s.t. the hyperplane x"8 + 8o = 0 perfectly
separates the two classes on the training set:

yk(ka,B—i-ﬂo) >0, fork=1,...,n,

Separable case (p = 2 example)
25

+
ol
15 -
1k Pb: infinitely many possible perfect
05 - separating hyperplanes
~ ol X'B+Bo=0
>
os | = Find the 'optimal’ separating
4l hyperplane?
sl = makes the 'biggest gap’ from the
Al samples
25 | . . . . ) )
3 2 1 0 1 2 3
X
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LSuppovt Vector Machine (SVM)

Separable case

Maximum margin separating hyperplane (separable case)

Distance of a point x to an hyperplane H s.t. x' 3+ o = 0,

d(xe, H) = mxin {||x— x| : x"B+ 6o = 0}

Maximum margin principle
We are interested in the 'optimal’ perfect separating hyperplane maximizing the distance M > 0, called

the margin, between the samples of each class and the separating hyperplane
= Find 3 € R? and (o € R s.t. the margin
M= 1r§nk|2n{d(xk’ H)}

is maximized
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Separable case

Signed distance

From the orthogonality principle, L
B
7o TT

where X is the orthogonal projection of xo on H H: x"B+6=0
X EH=-XB="7

d(x0, H) = [[x0 — %ol ,

= Xp — Xo and B3 are collinear,
= X0 — Xo = <X0 —/)Eo,ﬂ*> ,3*, where ﬂ* = %,
—_———

unsigned distance

. . N XX B —x x B+
= signed distance = (xo — xo)T”':%” = 0'6”5” 0 = Oﬁ,@Hﬂo’
Remarks
> [(x0 — X0, 3%} = ||x0 — Xo|| = d(x0,H) < “signed distance”

> for any perfect separating hyperplane yi(xx — X, ") = myk(x[ﬁ +B0)=>0, for k=1,...,n,
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Separable case

Canonical separating hyperplane
For any perfect separating hyperplane, for k=1,... n
V(X — Xk, B%) = d(xx, H)

Hence, the margin reads

M= lrgnkign{d(xh H)} = ||ﬁ|| min_ {yk(x[ﬁ + 50)}

Remarks
» The bound M is reached (min of a countable set),

1= the samples at the margin are denoted as Xmargin

Canonical expression of the separating hyperplane
B and By are normalized s.t.

}’margin(xr-’r—;arginﬁ + ﬁO) =1, thus M= Hﬁ”
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LSuppovt Vector Machine (SVM)

Separable case

Primal problem (separable case)

Canonical hyperplane expression:

maximizing the margin M = m < minimizing 18l
< minimizing 38|

Primal optimization problem

ming_ g, 31811,
subject to  yk (x[ﬂ + ﬁo) >1, forl< k<n.

» quadratic criterion + linear inequality constraints

= convex optimization problem for which standard numerical procedures are available
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Support Vector Machine (SVM)

Separable case

Reminder on constrained optimization

» Concept of feasible descent direction
» Primal problem (constrained form) / Dual problem (Lagrangian form)

» KKT necessary conditions
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Separable case
I

Reminder on constrained optimization

Constrained problem: primal problem

[ o

Objective function f(x)
To decrease the objective function f{x), a descent direction d must satisfy

fix+ ed) = J(x) + eVAx)d < f(x),

hence d is a descent direction iff Vf{x)"d < 0
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Support Vector Machine (SVM)

Separable case

Reminder on constrained optimization (Cont'd)

Objective f(x)
descent direction:  Vf(x)"d < 0

Constraint g(x)

To satisfy the constraint, a feasible descent direction d must satisfy
g(x+ ed) ~ g(x) + eVg(x)'d <0,
hence

g(x) <0 = no constraint on d,

feasible direction: {g(x) —0 = Ve Td<0
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Support Vector Machine (SVM)

Separable case

Reminder on constrained optimization (Cont'd)
Necessary conditions: two possibilities for optimality
There is no feasible descent direction in x* when either

1. VAX") = —aVg(x*), with a > 0, g(x*) =0
2. VAx*)=0, ie a=0, gx*)<0

Remarks

1. x* lies at the limit of the feasible domain (i.e. g(x*) = 0) and the two gradients are collinear and
in opposite direction

2. x" belongs to the interior of the feasible domain (i.e. g(x*) < 0). Same 1st order necessary
conditions as those obtained when there is no constraint
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Separable case

Reminder on constrained optimization (Cont'd)

Constrained form: primal problem

{ min,  f(x)

st.  gi(x) <0, forall j=1,...,q

Lagrangian form: dual problem
Inequality convex constraints = introduction of the Lagrange multipliers «;

{ minx  f{x) + > cugi(x")

s.t. a;j >0, forall j=1,...,q

Karush—Kuhn—Tucker (KKT) conditions

For x* being a local min, it is necessary that

VAX) + 3], Vg (x) =0 < first order conditions
s.t. o > 0 and ajgi(x") =0 < complementary conditions
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Support Vector Machine (SVM)

Separable case

End of reminder on constrained optimization

= Dual form for SVM optimization problem
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LSuppovt Vector Machine (SVM)

Separable case

Lagrangian (separable case)

Linear constraints of positivity = introduction of the Lagrange multipliers

Lagrangian

i=

L(B, o) = 3187 = D e [n(x B+ o) 1],
| S ——

>0

where a; are the Lagrange multipliers

First order Karush—Kuhn—Tucker necessary conditions
Setting the partial derivatives w.r.t. 3 and By to zero yields

{ B =L, qiyixi,
0 =37, iy,

> plugging these expression in the Lagrangian yields the dual expression
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Support Vector Machine (SVM)

Separable case

Dual problem (separable case)

Dual optimization problem
maxa L) = 300, i — 5 207, cicyiyixg g,
subject to a;>0and Y I ajyi=0.

= simple convex optimization problem for which standard numerical procedures are available

= calculation of the optimum multipliers &;
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Separable case

Support vectors and maximum margin hyperplane (separable case)

Complementary slackness Karush—Kuhn—Tucker necessary conditions

a,-[y,-h(x,-) — 1] =0 = a,' =0 as y,-h(x,-) >1

» since ,[A‘} =Y 0, Qiyixi, ,@ depends only on the points at the margin < support vectors

» By can be derived from the complementary slackness expression for any of support vectors Xmargin

~T ~
Ymarginh(xmargin) -1=0 = ﬂ Xmargin T 60 = Ymargin,
~ T
= ﬁO = _,6 Xmargin + Ymargin

= the only inputs used to construct the maximum margin hyperplane are the support vectors and the
discriminant function reads

n
h(X) = Z ai_yi(x - xmargin)Txi + Ymargin

i=1
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Support Vector Machine (SVM)

Separable case

Maximum margin separating hyperplane (separable case)

Separable case

= Maximizing the margin M between the separating hyperplane and the training data:

25

2

15

1

0.5

~ 0

-0.5

S

-2.5

x"B+6=0

+

* Margin M =

Support Vectors

1
18]

The maximum margin hyperplane depends
only on the points at the margin called the
support vectors
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Nonseparable case

Nonseparable case

» in general, overlap of the 2 classes

= No hyperplane that perfectly separates the training data

15 4 +

05 F + X XX
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Nonseparable case

Maximum margin separating hyperplane (nonseparable case)

Soft-Margin solution for the nonseparable case
Considering a soft-margin that allows wrong classifications

» introduction of slack variables £; > 0 s.t.

yi(xi' B+ Bo) > (1)

Support vectors include now the wrong classified points, and the points inside the margins (£; > 0)

» Primal problem: adding a penalty in the criterion

mingg.e  3IIB]17 + CXL, &
subject to  yi(xi' B+ o) > 1 —&;,

where C > 0 is the “cost” or “regularization” parameter
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Nonseparable case

Regularization parameter (nonseparable case)

Criterion to be minimized: %H,@H2 + C; &,

Influence of the regularization parameter C > 0
C drives the margin size, thus the number of support vectors
» C>> 0 : small margin, less support vectors (~ overfitting)
» C— 0" : large margin, more support vectors (~ underfitting)
» C— +o0o : converges in the separable case to the Hard-Margin solution
Rk: strength of the regularization is inversely proportional to C (compared with the regularization parameter A
for ridge penalty, C = %)
Choosing the regularization parameter C > 0
» the optimal C can be estimated by cross validation
= performance might not be very sensitive to choices of C (due to the rigidity of a linear boundary)

= usually C= 1 yields a good trade-off
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Nonseparable case

Dual problem (nonseparable case)

Introducing the Lagrangian and substituting the first order KKT conditions w.r.t. 3, fo, & yields the
dual expression

Dual optimization problem
MaXea ( )= ai— % EZJ’:I O‘iajyiijiijv
subject to 0<a;<Cand Y ;,ay =0.

= only difference w.r.t the separable case: «; < C constraint!

= simple convex optimization problem for which standard numerical procedure are available

23/ 47



Statistical Learning
Support Vector Machine (SVM)

Nonseparable case

Optimal separating hyperplane

Soft-Margin example (nonseparable case)

25 +
2 +
1.5 |
i L +
os | Vector Supports
The support vectors are now the
S points at the margin, inside the
05 | x X 1 margin, or wrongly classified.
Margin M = ﬂ
X .
ar & = ME; < distance between a
15 - support vector and the margin
2t
x84+ 8y =0 X
-25 L L L L L L L L
3 2 1 0 1 2 3
X
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Linear discrimination: comparison of SVM vs LDA

Linear discrimination: SVM vs LDA

Linear discrimination
» Linear Discriminant Analysis (LDA): Gaussian generative model

» SVM: criterion optimization (maximizing the margin)

25 + 25
2k + 2
15 15
s 1k
05 0.5 F
& of oot
05 - 0.5 -
Ak
15 1 1.5
2| Support Vectors 2+
25 - 25
3 2 1 ;‘ 1 2 3
SVM
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Linear discrimination: comparison of SVM vs LDA

Linear discrimination: SVM vs LDA (Cont'd)
Adding one atypical data

SVM property
> Nonsensitive to atypical points (outliers) far from the margin

1= sparse method (information = support vectors)
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Transformed space and Kernel function
:

Nonlinear discrimination in the input space

15 %
X X
1L
X
+, + x
05 f X Sy x
x ¥
of + i+ x
+ . . . '
<! + ) T « Sometimes a linear separation won't work,
-0.5 - .
% N whatever the slack variables...
T X
X
45 F X
X X
-2.5 2 1.5 1 0.5 0 0.5 1 15 2
X

Transformed space F
» Choice of a transformed space F (expansion space) where the linear separation assumption is

more relevant
» Nonlinear expansion map ¢ : R? — F, x — ¢(x) « enlarged features
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Transformed space and Kernel function

Nonlinear discrimination in the input space
» Non-linear transformation: 'projection’ in the space of monomials of order 2.
¢ R* 5 R
x = ¢(x)

(x1,%2) (x%,x%,\@xlxz)

» In R3, the inner product can be expressed as

(o(x), (X)) Z P(x)ip(X)i
= ¢(X)1¢(X )1+ G(x)20(x)2 + ¢(x)36(x )3

= X%X/f + x3x 3 + 2x1%2x"1X2

= (X1X 1+ X2X/2)2

= (x,x')%

= k(x,x).
Remark: k(x,x’) can be computed directly from the input data without computing ¢(x) (see later the
"Kernel Trick’)!
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Transformed space and Kernel function

Nonlinear discrimination in the input space
> XeR? ¢(x) = (4,3, V2xx)"

15
X
1k
X
0.5 X
ol X
><(\l
X
05 F
x X
RS
1.5 +
X
2 I I I I I 1
25 -2 1.5 -0.5 0.5 1.5 2

Linear separation in the feature space F = Nonlinear separation in the input space
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L Transformed space and Kernel function

Kernel trick
The SVM solution depends only on the inner product between the input features ¢(x) and the support
vectors ¢(Xmargin )
Kernel trick
Use of a kernel function k associated with an expansion/feature map ¢:
k: RPFXxRF — R
(xX) = kxX)=(¢(x), (X))

and the separating hyperplane reads h(x) = >-7 ; @iyik(xi, x) + Bo
Advantages

» computations are performed in the original input space: less expensive than in a high dimensional
transformed space F

» explicit representations of the feature map ¢ and enlarged feature space F are not necessary, the
only expression of k is required!

= possibility of complex transformations in possible infinite space F

w= standard trick in machine learning not limited to SVM (kernel ridge regression, gaussian process,
spectral clustering, kernel-PCA ...)
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Transformed space and Kernel function

Kernel function

Definition (Positive semi-definite kernel)
k:R?x R? — R is positive semi-definite is
> Y(x,x') € RY x RY k(xi, x;) = k(xj, x:).
> Vne N, Ve ... & € R Vxi...x, € RY YT Eigik(xi, %)) > 0.

Theorem (Mercer Theorem)

To every positive semi-definite kernel k, there exists a Hilbert space F and a feature map ¢ : R? — H
such that for all x;, x; we have k(xi,x;) = (d(xi), d(x;)) 2.
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Transformed space and Kernel function

Operations on kernels

Let k1 and ko be positive semi-definite, and A1 2 > 0 then:

1.

o s wN

A1k, (multiplication by a positive scalar)
Akt + Xoko, (sum of kernels),

kik2, (product of kernels),

exp(ki), (exponential of kernel),

- (xi, x;) = g(x1)g(x;) ki (xi, x;), with g: RY — R, (multiplication by a function)

are all positive semi-definite, hence valid kernels.

== These operations allow us to create more complicated kernels by combining simple ones.
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Transformed space and Kernel function

Choosing the Kernel function

Usual kernel functions
> Linear kernel ( F =RP) : k(x,xX) = x'x

» Polynomial kernel (dimension of F increases with the order d)
k(x,X)=(x"X)? or (xX'X +1)¢
» Gaussian radial function (F with infinite dimension)
Ko ¥) = exp (—llx— X1
> Neural net kernel (F with infinite dimension)
k(x,X') = tanh (mxTx' + Hz)

= standard practice is to estimate the optimal kernel parameters by cross-validation
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Examples

Application: binary data (cf course 2 example)

Linear kernel

o} : ! ]
0:iip: S i |
o
o o )io : :
0::0p%::0 0 % 60 : e
3 : o o 1
E4
$ — SVM decision boundary
: ---- SVM margin boundaries
= ----  Bayes (optimal) decision boundary
o
Training Error: 0.270 i Ty
Test Error: 0.288 :::::1it Prrrriiiin: : :
Bayes Error: 0.210  © e o [
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Examples

Application: binary data (cf course 2 example)

Linear kernel

— SVM decision boundary
-~ SVM margin boundaries

----  Bayes (optimal) decision boundary

Training Error: 0.26 -~~~
Test Error: 0.30 i
Bayes Error: 021 HCE o]
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Examples

Application: binary data (cf course 2 example)

Polynomial kernel (d = 4)

" .
(¢] O\\ \9 o)
Oile iiid0e
Gl g e #00
0/:@g 0 o
o
o
o
o
o s
L

\
ommAmee

\

Training Error: 0.180
Test Error: 0.245
Bayes Error:  0.210

SVM decision boundary

SVM margin boundaries

Bayes (optimal) decision boundary
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Examples

Application: binary data (cf course 2 example)

Gaussian radial kernel (y = 1)

g JUEES !
ANy rra el
% 0 o g,go i
Lartod 0.0 7y
/0 Q ot ;
80,0 ¥ @00 i
i 110 O’, o % ]
' H ) 800‘1
3 b o 0@0 0g 8%
\ o ) BP0 T %‘\d\
— SVM decision boundary

SVM margin boundaries

Bayes (optimal) decision boundary

Training Error: 0.180
Test Error: 0.218 S1Es
Bayes Error:  0.210
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Examples

Scale your data!

Scaling of the variables matters!
For instance, with Gaussian kernel

k(x, xX')

exp (—l1x— £|*)

p
= o[> - X)),
i=1

the variables that have the greatest magnitudes are favored to compute distances or inner-products.

Practical advices
» If the variables are in different units, scaling each is strongly recommended.

» If they are in the same units, you might or might not scale the variables (depend on your problem)

Usual scaling methods

L . X; — min;
» normalization in [0,1]: % = ——————
max; — min;
L . . . Xi— Wi
» standardization to get zero mean and unit variance: X; =
ai
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Multiclass SVM

Multiclass SVM

> Ye{l,...,K} + K classes
Standard approach: direct generalization by using multiple binary SVMs

OVA: one-versus-all strategy

» K classifiers between one class (41 label) versus all the other classes (—1 label)

w classifier with the highest confidence value (e.g. the maximum distance to the separator
hyperplane) assigns the class

OVO: one-versus-one strategy

> (5) = K(K — 1)/2 classifiers between every pair of classes

= majority vote rule: the class with the most votes determines the instance classification

Which to choose? if K is not too large, choose OVO
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SVM vs Logistic regression (LR)

SVM vs Logistic regression (LR)

» When classes are nearly separable, SVM does better than LR. So does LDA.
» When not, LR (with ridge penalty) and SVM are very similar
> |If one wants to estimate probabilities for each class, LR is the natural choice

» For non linear boudaries, kernel SVMs are popular. Can use kernels with LR and LDA as well, but
computations are more expensive.
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Conclusions

Conclusions on Support Vector Machines

SVM properties

>

>
>

model free approach based on a maximum margin criterion: may be very efficient for real-word
data (but do not directly provide probability estimates nor variable importance weights)

memory efficient sparse solution characterized by the only support vectors

versatile algorithm: different choices of kernels to make a nonlinear classification in the original
input space by performing an implicit linear classification in a higher dimensional space

Possible extensions to other tasks than classification like regression (support vector regression) or
anomaly detection (one-class SVM)

effective in high dimensional spaces even when p > n.

computionally expensive to train for large n data sets: cost of the optimization procedure to solve
the quadratic problem scales from O(pn®) to O(pn®) operations depending on the training set.

popular algorithm, with a large literature
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Conclusions

Perspectives on 'Black Box' (model free) approaches

Random Forests
» involve decision tree to split the prediction space in simple regions
» combine multiple decision trees to yield a single consensus prediction

= method able to scale efficiently to high dimensional data and large data sets

Deep Neural Nets

» Neural Nets with multiple hidden layers between input and output ones

» many variants of deep architectures (Recurrent, Convolutional,...) used in specific domains
(speech, vision, ...)

» very computationally expensive to train due to the high number of parameters

» supported by empirical evidence

= dramatic performance jump for some big data applications
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Appendix: Some words on Random Forests

Outline for model free approaches

Separating Hyperplane

Separable case

Nonseparable case

Linear discrimination: comparison of SVM vs LDA
Transformed space and Kernel function

Examples

Multiclass SVM

SVM vs Logistic regression (LR)

Appendix: Some words on Random Forests
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Appendix: Some words on Random Forests

Random Forests

» Introduced in 2001 (Breiman)
» Model free and non linear
» Build a large collection of de-correlated trees and average them

» Combination of weak learners
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Appendix: Some words on Random Forests

Decision trees

Variable v

Variable v

p1 > 01

45/ 47



Statistical Learning

Appendix: Some words on Random Forests

Decision trees

gl

p1 <41 p1 > 01

Variable vy

o)
Variable vg
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Appendix: Some words on Random Forests

Decision trees

b
: °
L
®
° i e °
™ L
S : °
@ 5 °
= s ¢
.3 e
§ ds ° b .. """"""" by
e o
: ®
° e
5

Variable vq
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Appendix: Some words on Random Forests

Decision trees

0
: °
e
o !
° ) °
; °
£ frrmm e ry d3
) ; °
= | °
8 e
§ 02 0 .. ************* 5
;e °
° ‘e
5

Variable vq
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Appendix: Some words on Random Forests

Random Forests

» For each tree:

» Draw bootstrap sample X? for training sample
> Learn tree, for each node

P select m features from the initial p features
P Find the best split (e.g. Gini index, entropy ...)

AP AR AR

46/ 47



Statistical Learning

Appendix: Some words on Random Forests

Application: binary data

Trairiing Errof:'0.000
Test Error: 0.238
Bayes Error:  0.210
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