
Statistical Learning

Machine/Statistical Learning

Linear models: regression and logistic regression

SICOM, M2 Sigma

2022-23

1/ 44



Statistical Learning

Introduction

Model based approaches

Reminder on Supervised Learning

▶ input data X ∈ Rp

▶ reponse Y to be predicted

▶ training set (X1,Y1), . . . , (Xn,Yn)

In a model based approach, we seek an explicit relation between the (input) data X and the response Y
We focus here on Discriminative models, where we just model explicitly the conditional distribution
P(Y |X ) rather than the joint dictribution P(X ,Y )
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Introduction

Model based approaches: Generative vs Discriminative methods

Generative methods
Deduction of P(Y |X ) from Bayes rule

▶ Linear or Quadratic Discriminant Analysis

▶ Näıve Bayes

▶ ...

Discriminative methods
Direct learning of P(Y |X ), e.g.

▶ Linear regression

▶ Logistic ”regression” (← generalized linear model for classification tasks)

▶ ...
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Introduction

Linear model: Keep it simple!

Simple linear approach may seem overly simplistic

- true prediction functions are never linear

+ extremly useful, both conceptually and practically

Practically

Gorge Box, 60’: “Essentially, all models are wrong, but some are very useful”

☞ Simple is actually very good: works very well in a lot of situations by capturing the main effects
(which are generally the most interesting)

Conceptually

Many concepts developped for the linear problem are important for a lot of the supervised learning
techniques

☞ Although it is nerver correct, a linear model serves as a good and interpretable approximation of
the unknown true function f (X )
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Reminder on Linear regression

Linear Regression Problem

▶ Xi = (Xi,1, . . . ,Xi,p)
T ∈ Rp,

▶ Yi ∈ R,
for i = 1, . . . , n (sized n training set)

Linear Regression Model

Yi = β0 +

p∑
j=1

βjXi,j + σϵi , for i = 1, . . . , n,

▶ ϵi is a centered with unit variance (E [ϵi ] = 0, var (ϵi ) = 1) white noise

▶ β0 is the “intercept” (reduces to the ordinate at the origin when p = 1)

▶ β ≡ (β0, . . . , βp) ∈ Rp+1 is the coefficient vector

Objective: estimation of β using the samples in the training set ← supervised learning problem

Remark: model linear w.r.t. β ≡ (β0, . . . , βp) ∈ Rp+1 , but not necessarily linear w.r.t.

▶ the inputs Xi : we can add non linear predictors h(X1, . . . ,Xp) in the model, e.g. X 2
i , XiXj ...

▶ the outputs Yi : we can introduce a non linear link function ← generalized linear model, e.g.
logistic regression
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Reminder on Linear regression

Least Squares (LS) Estimator

Linear least squares fitting with X ∈ R2

yi = β0 +

p∑
j=1

βjxi,j + σϵi , for i = 1, . . . , n,

LS estimate defined by minimizing the Residual Sum of
Squares (RSS)

β̂ = argmin
β

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxi,j

)2

︸ ︷︷ ︸
RSS(β)

▶ RSS(β) ∝ training error rate for quadratic loss
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Reminder on Linear regression

Least Squares Estimator (Cont’d)

β̂ = argmin
β

RSS(β), where RSS(β) =
n∑

i=1

(
yi − β0 −

p∑
j=1

βjxi,j

)2

Matrix expression of RSS

RSS(β) = ||Y − Xβ||22,

where Y =

y1
...
yn

 ∈ Rn, X =

1 x1,1 . . . x1,p
...

...
...

1 xn,1 . . . xn,p

 ∈ Rn×(p+1), β =

β0

...
βp

 ∈ Rp+1
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Reminder on Linear regression

LS Estimator derivation

Ŷ = X β̂ is the prediction in the space spanned by the column vectors of X such that the euclidean
error norm ||Y − X β̂||2 is minimized

Orthogonality principle

Let X j be the jth column of X

β
^

XY=
^

β
^

XY−

Y

,X
1 2 p+1
,X  , ...X( )span

for j = 1, . . . , p + 1

⟨X j ,Y − X β̂⟩ = (X j)T
(
Y − X β̂

)
= 0,

⇔ XT
(
Y − X β̂

)
= 0,

⇔
(
XTX

)
β̂ = XTY

Rk: This condition can also be derived by setting the gradient of RSS(β) = (Y −Xβ)T (Y −Xβ) to 0.
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Reminder on Linear regression

LS Estimator computation

Assumption: rankX = p + 1, hence XTX is invertible

Analytical expression

Because
(
XTX

)
β̂ = XTY ,

β̂=
(
XTX

)−1

XTY ,

Numerical computation in high dimension

Pb: When p > 103 or p > 104, too expansive to compute
(
XTX

)−1
...

☞ more efficient to use a numerical procedure to minimize the RSS, e.g. steepest descent (see next
section)
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Reminder on Linear regression

LS Estimator properties

For a known X , Y = Xβ + σε where E [ε] = 0n and cov ε = In.

▶ β̂ is an unbiased estimator of β

E [β̂] = E

[(
XTX

)−1

XTY

]
=
(
XTX

)−1

XTXβ +
(
XTX

)−1

XTE [ε]= β

▶ Covariance

cov β̂ =
(
XTX

)−1

XT cov (Y )X
(
XTX

)−1

= σ2
(
XTX

)−1

▶ MSE (Power of the estimation error)

E
[
||β̂ − β||2

]
= E

[(
β̂ − β

)T (
β̂ − β

)]
= E

[
trace

(
β̂ − β

)(
β̂ − β

)T]
,

= trace
(
cov β̂

)
= σ2 trace

((
XTX

)−1
)

= σ2
p+1∑
j=1

1

λj

where λi > 0 are the eigenvalues of the symm. def. pos. matrix XTX . What happens for λi ≈ 0?
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Reminder on Linear regression

LS Estimator properties (Cont’d)

For a known X , Y = Xβ + σε where E [ε] = 0n and cov ε = In.

Noise variance estimator

An unbiased estimate of the noise variance σ2 can be deduced as

σ̂2 =
1

n−p − 1
RSS

(
β̂
)
,

Gaussian noise ε ∼ N (0, In)

▶ β̂ is N
(
β, σ2

(
XTX

)−1
)
distributed,

▶ LS estimator β̂ is also the maximum likelihood estimator
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Stochastic Gradient Descent

Reminder on Steepest descent, aka gradient descent

We can define the criterion to be minimized as J(β) ≡ 1
2
RSS(β)

Steepest descent

Ubiquitous iterative procedure based on the observation that
J(w) decreases fastest if one goes from w in the direction of
the negative gradient of J(·) at w, i.e. −∇J(w). Here one
iteration consists in

βk+1 = βk − αk∇β J(βk),

where
▶ αk ∈ R is the learning rate

▶ ∇β J(β) = XTXβ − XTY is the batch gradient
(computed over the whole training set)
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Stochastic Gradient Descent

Stochastic Gradient Descent (SGD)

Remember: batch gradient ∇β J(β) = XTXβ − XTY

Pb: For large and high-dimensional datasets, still too expansive to compute the batch gradient
(requires to store and compute XTX ...)

☞ stochastic approximation of the batch gradient to decrease the computational burden

Stochastic gradient

Descent direction is computed as ∇β J(β) ≈ XT
i Xiβ − XT

i Yi , for a given sample i ∈ {1, . . . , n} in the
training set, where Xi is the ith line vector of X .

▶ cheaper than batch one for a single iteration, can be much more efficient

▶ one loop over all the i = 1, . . . , n training samples is called an epoch
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Stochastic Gradient Descent

Mini-batch SGD

Tradeoff between batch and stochastic gradients:

▶ gradient computed on a small subset (mini-batch) of the training set,

▶ one loop over all the mini-batches (thus over the whole training set) is an epoch

▶ one epoch is one iteration of the gradient procedure, which is repeated many times to achieve a
good minimization

Properties

▶ smoother convergence than pure SGD

▶ more computationally efficient than batch gradient

▶ size b of the mini-batch drives the trade-off (b = 1 is pure SGD, b = n is batch gradient).
Basically b = 32, 64 or 128.

☞ standard optimization procedure for many ML methods (e.g. deep neural nets)
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Stochastic Gradient Descent

Reminder on Least Squares Estimators (LSE)

Linear regression model

For a sized n training set with p variables (may include the intercept)

Y = Xβ + ε,

where

▶ Y ∈ Rn is the response/output vector,

▶ X ∈ Rn×p is the data matrix (jth column X j is the sample vector fot jth input variable)

▶ ε ∈ Rn is the non-predictible part (noise)

▶ β ∈ Rp are the (unknown) coefficients/weights for the input variables

Least Squares (LS) prediction

For a test data x ∈ Rp, we predict ŷ = xT β̂ where the LSE

β̂ = (XTX )−1XT y ,

is the LS fit on the training set
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Stochastic Gradient Descent

Limitations of Least Squares Estimators (LSE)

Problem
When rankX < p, or when X has singular values close to zero, then XTX is no more invertible, or ill
conditioned (eigenvalues close to zero)...

Causes

▶ redundant or nearly-collinear predictors, e.g. X k ≈ aX l + b, where X j is the jth column of X

▶ high dimensional problem where p ≈ n (or p > n)

Effects
no single, or stable, solution for β̂

▶ high variance of β̂ as an eigenvalue λi of X
TX is close to zero (||β̂|| → +∞ as λi → 0),

▶ true error rate explodes since a small perturbation in the training set yields a substantially
different estimate β̂ and prediction rule ŷ = xT β̂

☞ over-fitting problem
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Stochastic Gradient Descent

Instability of LSE: Deconvolution illustration

▶ y ∈ Rn with n = 2562, β ∈ Rp with p = 2562,

▶ X ∈ Rn×p ← sized (2562)× (2562) matrix...

β ← original image y = Xβ ← blurred image

β̂=(XTX )−1XT y ← LS estimate

Due to the bad conditioning of XTX (e.v. close to zero), the noise (here numerical round-off errors) is

multiplied by an almost infinite gain, and the estimated coefficients β̂j explode to ±∞ !
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Regularization and shrinkage methods

Regularization methods

Supplementary materials

Prof. A. Ihler short (8mn) and educational video
https://www.youtube.com/watch?v=sO4ZirJh9ds

Wikipedia page
https://en.wikipedia.org/wiki/Regularized_least_squares#Specific_examples

Scikit-learn nice documentation with examples (can stop just before section 1.1.4)
https://scikit-learn.org/stable/modules/linear_model.html
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Regularization and shrinkage methods

Regularization: shrinkage

Idea: introducing a little bias in the estimation of β may lead to a substantial decrease in variance and,
hence, in the true error rate

Penalized regression

Regularize the estimation problem by introducing a penalization term for β

β̃ = argmin
β

[RSS(β) + λPen(β)]

▶ RSS(β) is the fidelity term to the training set (replace with the opposite log-likehihood −ℓ(β) for
generalized linear model, e.g. logistic regression)

▶ Pen(β) is the a priori to regularize the solution,

▶ λ > 0 is the penalization coefficient

Choosing λ: tradeoff between overfitting (small λ) and underfitting (large λ)

☞ standard practice is to use cross-validation to estimate an optimal λ for the test error rate
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Regularization and shrinkage methods

Ridge regression

Ridge regression

Penalization in the (squared) ℓ2 sense:

Pen(β) ≡ βTβ = ||β||22, ← Tychonov regularization

β̃ is thus obtained by minimizing

RSS(β)+λPen(β)=(Y−Xβ)T (Y−Xβ)+λβTβ,

=(β−(XTX+λI )−1XTY)T (XTX+λI)(β−(XTX+λI )−1XTY)+Cst,

Ridge estimator: β̃ = (XTX + λI )−1XTY

Remark
similar to LSE, with an additional ’ridge’ on the diagonal of XTX

▶ XTX + λI has all its eigenvalues greater than λ > 0, ← ensures that β̃ is always defined, and
stable for large enough λ

☞ when λ→ 0, then β̃ → β̂ (over-fitting risk),

☞ when λ→ +∞, then β̃ → 0 (under-fitting)
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Regularization and shrinkage methods

Ridge regression

Ridge Regression: deconvolution illustration
▶ y ∈ Rn with n = 2562, β ∈ Rp with p = 2562,
▶ X ∈ Rn×p ← sized (2562)× (2562) matrix...

β ← original image y = Xβ ← blurred image

β̃=(XTX+λI )−1XT y ← ridge estimate β̂=(XTX )−1XT y ← LS estimate
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Regularization and shrinkage methods
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Regularization and shrinkage methods

Lasso estimator

Regularization by promoting sparsity

Sparse representations/approximations

A representation, or an approximation, is said to be sparse when most of the coefficients are zero

’Bet on Sparsity’ principle

Sparsity is a good option in high dimension!

▶ if the sparsity assumption does not hold, no method will be able to recover the underlying model
in high dimension where p ≈ n or p > n

▶ but if the sparsity assumption holds true, then the parameters can be efficiently estimated by a
method that promotes sparsity

☞ Occam’s razor or KISS (keep it simple, stupid) principles: same idea that simpler models are
preferable than more complex ones

Application to the regression problem

choosing a penalization function Pen(β) that promotes the sparsity of β (i.e. with many components
βj = 0 for j = 1, . . . , p + 1) ← Lasso estimator
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Regularization and shrinkage methods

Lasso estimator

Lasso (’least absolute shrinkage and selection operator’) estimator

Definition

β̃lasso = argmin
β

[RSS(β) + λ ||β||1] ,

where ||β||1 =
∑p+1

j=1 |βj | is the ℓ1 norm

▶ no analytical expression of β̃lasso

▶ but convex optimization problem where very efficient numerical procedures are available to
compute β̃lasso

Lasso advantages

Converges to a generally sparse solution, i.e. such that βk = 0 for a subset of index k

☞ the less significant variables are explicitly discarded

☞ similar stability than ridge estimator + variable selection
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Regularization and shrinkage methods

Lasso estimator

Penalization with ℓ1 and ℓ2 norms: geometrical interpretation

▶ Least Squares estimator: β̂ = argmin RSS(β),

▶ Penalized/Regularized estimator: β̃ = argmin (RSS(β) + λPen(β))

⇔ β̃ = argmin RSS(β) under the constraint Pen
(
β̃
)
≤ s(λ).

β||  ||β||  ||

β1 β1

β2
β2

1 2

β
^

β
^

βRSS(   ) βRSS(   )

��
��
��

��
��
��

β
∼

β
∼

Illustration in dimension p = 2 : β = (β1, β2)T

▶ red ellipses are the contour plots of RSS

▶ blue ”balls” are the constraint sets for
lasso: Pen (β) = ||β||1 = |β1|+ |β2| (left),
ridge: Pen (β) = ||β||22 = β2

1 + β2
2 (right).

▶ LSE β̂ is the center of the red ellipses

▶ Penalized LSE β̃ is the intersection between red
ellipses and blue ”ball”

☞ Here the RSS mainly varies along β2, and we get

β̃1 = 0 for lasso

(while β̃1 ≈ 0 but not zero for ridge)

ℓ1 norm promotes the sparsity of the estimator: the less significant predictors are explicitly discarded (coeffs βk

are zero) ← model selection
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Regularization and shrinkage methods

Lasso estimator

Scale your data!

▶ Linear models (w/o regularization) are invariant under the scaling of the variables: the prediction
function is unchanged.

▶ Regularized linear models are not due to the penalty term: scaling of the variables matters!

☞ the variables that have the greatest magnitudes are favoured (same problem for distance based
ML methods s.t. K-NN, SVM, ...)

Practical advices

▶ If the variables are in different units, scaling each is strongly recommended.

▶ If they are in the same units, you might or might not scale the variables (depend on your problem)

Usual scaling methods

▶ normalization in [0, 1]: x̃i =
xi −mini

maxi −mini

▶ standardization to get zero mean and unit variance: x̃i =
xi − µi

σi

28/ 44



Statistical Learning

Regularization and shrinkage methods

Application: prostate data

Application: prostate data

Stamey et al. (1989) study to examine the association between prostate specific antigen (PSA) and
several clinical measures that are potentially associated with PSA in men. Objective is to predict the
Log PSA (supervised regression problem) from eight variables

▶ lcavol: Log cancer volume

▶ lweight: Log prostate weight

▶ age: The man’s age

▶ lbph: Log of the amount of benign hyperplasia

▶ svi: Seminal vesicle invasion; 1=Yes, 0=No

▶ lcp: Log of capsular penetration

▶ gleason: Gleason score

▶ pgg45: Percent of Gleason scores 4 or 5
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Regularization and shrinkage methods

Application: prostate data

Application : prostate data

Lasso estimate (ℓ1-penalization): β̃(λ) = argminβ RSS(β) + λ||β||1,
Lasso path: We can plot the estimated variable coeffs β̃(λ)j vs λ, or equivalently vs ||β̃(λ)||1
▶ For large λ all the coefficients ar zeros (||β̃(λ)||1 = 0)

▶ When λ↘ then ||β̃(λ)||1 ↗: most significant variables sequentially enters the model (non-zero coeffs)

df
1 2 3 45 6 7 8

L1 norm
0 0.5 1 1.5 2 2.5

-0.2

0

0.2

0.4

0.6

0.8

Lasso estimates path

lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

Choosing λ

▶ large ||β̃(λ)||1 (small λ) → overfitting

▶ small ||β̃(λ)||1 (large λ) → underfitting

▶ cross-validation estimation of λ yields

||β̃(λ)||1 = 1.06 (λ = 0.21)

⇒ only 3 predictors enter the model to predict
PSA: lcavol, svi, lweight
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Regularization and shrinkage methods

Application: prostate data

Application : prostate data

Comparison of ridge and lasso estimators

df
13567 8

L2 norm
0 0.2 0.4 0.6 0.8 1 1.2

-0.1

0
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0.3

0.4
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0.6

0.7

Ridge estimates path
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gleason

pgg45

df
1 2 3 45 6 7 8

L1 norm
0 0.5 1 1.5 2 2.5
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0.6

0.8
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lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

Path of the penalized coefficients as a function of ||β̃(λ)||

▶ Ridge estimates are smooth functions of λ, with coefficients that are never stuck at zero.

▶ Lasso estimates are piecewise linear functions, with a kink each time a new variable enter the model

▶ Shrinkage effect: the larger λ, the more the coefficients are shrunken toward 0 for both penalties

▶ For small λ, thus large ||β̃(λ)||, both estimator becomes equivalent (convergence toward LSE)
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Logistic regression
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Logistic regression

Discriminative model for classification: Y ∈ Y ← discrete set

Discriminative model
For a given X = x , we want to model directly

Pr(Y = k|X = x)

for each value of the class label k ∈ Y
▶ do not require to specify the marginal distribution of the inputs X

Model-based classification rule
We predict the class with the highest probability

Ŷ = argmax
k

Pr(Y = k|X = x)

▶ this is the optimal rule for misclassication rate referred to as Bayes Classifier... if the model is true
(of course this is not the case, but it may be useful)!

How can we use linear regression to model a probability Pr(Y = k|X = x) ?
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Logistic regression

Model

Linear model for classification: Logistic regression (LR)

Classification problem Y ∈ Y ← discrete set

Binary classification problem: Y = {1, 2}
Consider the following model

Pr(Yi = 1|Xi = xi ) = ϕ(xT
i β) =

exp (xT
i β)

1 + exp (xT
i β)

,

where

▶ xi = (1, xi,1, . . . , xi,p)
T ∈ Rp+1 ← intercept term included by

default,

▶ ϕ is the logistic function: maps a real value to a probability

ϕ : R→ (0, 1)

u 7→ exp u
1+exp u

= 1
1+exp (−u)

.

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Multiclass problem: Y = {1, 2, . . . ,K}
logistic model can be easily extented to the multiclass problem: multinomial logistic regression
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Logistic regression

Model

LR is a generalized linear model

Consider

▶ pi ≡ Pr(Yi = 1|Xi = xi ) = ϕ(xT
i β)

▶ ϕ−1 : p ∈ (0, 1) 7→ log p
1−p
∈ R is the logit function

Generalized linear model

▶ Linear equation w.r.t. β:
logit (pi ) = xT

i β,

▶ + additional nonlinear constraint (proba sum to 1):

Pr(Yi = 2|Xi = xi ) = 1− pi =
1

1 + exp (xT
i β)
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Logistic regression

Model

Logistic regression for classification in K classes

When Y = {1, . . . ,K} ← K classes, the models becomes

log Pr(Yi=1|Xi=xi )
Pr(Yi=K |Xi=xi )

= xT
i β1,

log Pr(Yi=2|Xi=xi )
Pr(Yi=K |Xi=xi )

= xT
i β2,

...
...

log Pr(Yi=K−1|Xi=xi )
Pr(Yi=K |Xi=xi )

= xT
i βK−1,

☞ K − 1 equations + sum-to-one constraint on the probabilities

Multiclass case: logistic equations

Pr(Yi = k|Xi = xi ) =
exp (xT

i βk)

1 +
∑K−1

l=1 exp (xT
i βl)

, for k = 1, . . . ,K − 1,

Pr(Yi = K |Xi = xi ) =
1

1 +
∑K−1

l=1 exp (xT
i βl)
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Logistic regression

Estimation

Parameter estimation

Since the distribution of Y |X is known, the log-likelihood expresses as

ℓ(β) =
n∑

i=1

log pX ,Y (xi , yi |β),

=
n∑

i=1

log pY |X (yi |xi , β) +
n∑

i=1

log p(xi ), ← Bayes rule

where the second term is a constant that does not depend on β

Maximum likelihood estimator

Maximizing the log-likelihood w.r.t β ⇔ Maximizing the conditional log-likelihood
β 7→

∑n
i=1 log pY |X (yi |xi , β)

▶ no analytical expression of the ML estimator,

▶ numerical computation usually performed by a Newton-Raphson procedure but more
appropriate/efficient to use Stochastic Gradient Descent especially for regularized estimation.

▶ Rk: regularized estimator defined as β̃ = argminβ −ℓ(β) + λPen(β)
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Logistic regression

Application: Heart diseases data

Application: South African coronary heart disease (CHD)

A retrospective sample of males in a coro-
nary heart-disease (CHD) high-risk region
of the Western Cape, South Africa.

Matrix of the predictor scatterplots

▶ each plot ≡ pair of risk factors
▶ Here 7 predictors:

▶ sbp: systolic blood pressure,
▶ tobacco: cumulative tobacco

consumption (kg),
▶ ldl: ∼ cholesterol,
▶ famhist: family history of heart

disease (Present, Absent)
▶ obesity: quantitative indicator,
▶ alcohol: current alcohol

consumption
▶ age: age at onset

▶ response: CHD event (case) or not
(control)

▶ 160 cases / 302 controls
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Logistic regression

Application: Heart diseases data

Application: South African CHD (Cont’d)

Logistic regression fit of CHD events

Coefficient Std. Error Z score
(Intercept) −4.130 0.964 −4.285

sbp 0.006 0.006 1.023
tobacco 0.080 0.026 3.034

ldl 0.185 0.057 3.219
famhist 0.939 0.225 4.178
obesity −0.035 0.029 -1.187
alcohol 0.001 0.004 0.136

age 0.043 0.010 4.184

▶ A Z score ( ≡ Coeff / Std. Error) > 2 in absolute value is significant at the 5% level.

Must be interpreted with caution!

▶ systolic blood pressure (sbp) is not significant!

▶ nor is obesity (conversely, < 0 coefficient)!

→ result of the strong correlations between the predictors: over-fitting issue !
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Logistic regression

Application: Heart diseases data

Application: South African CHD (Cont’d) with greedy selection procedure

Model selection: greedy backward procedure

To prevent from over-fitting, find the variables that are sufficient for explaining the CHD outputs

▶ drop the least significant predictor, and refit the model

▶ repeat until no further terms can be dropped ← backward selection

Logistic regression fit with backward model selection procedure

Coefficient Std. Error Z score
(Intercept) −4.204 0.498 −8.45

tobacco 0.081 0.026 3.16
ldl 0.168 0.054 3.09

famhist 0.924 0.223 4.14
age 0.044 0.010 4.52

Interpretations

▶ Tobacco is measured in total lifetime usage in kilograms, with a median of 1kg for the controls
and 4.1kg for the cases

▶ An increase of 1kg ⇒ increase of the CHD proba of exp (0.081) = 1.084 or 8.4% (confidence
interval at 95% [1.03, 1.14])
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Logistic regression

Application: Heart diseases data

Application: South African CHD (Cont’d) with lasso selection procedure

Model selection: ℓ1 penalization (Lasso type method)

β̃(λ) = argmin
β
−ℓ(β) + λ||β||1,

→ function of λ where less significant variables are explicitly discarded

Path of the des coefficients ℓ1-penalized coefficients as a function of ||β̂(λ)||1

Choosing λ

▶ large ||β̃(λ)||1 (small λ) →
over-fitting

▶ small ||β̃(λ)||1 (large λ) →
under-fitting

▶ 0.43 ≤ ||β̃(λ)||1 ≤ 1.3 →
4 same predictors than
backward selection procedure
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Conclusions

Outline

Reminder on Linear regression

Stochastic Gradient Descent

Regularization and shrinkage methods
Ridge regression
Lasso estimator
Application: prostate data

Logistic regression
Model
Estimation
Application: Heart diseases data

Conclusions
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Conclusions

Conclusions

Generalized Linear Models
Learning of the prediction rule based on a model of Y given X

☞ Linear regression, Logistic regression

Properties

▶ Simplicity: useful to capture the main effects

▶ Interpretability

▶ Efficient numerical procedures for large or high-dimensional data
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Conclusions

Conclusions on Regularization for linear models

Regularization procedures are essential tools for data analysis, especially for big datasets involving
many predictors, to

▶ prevent for over-fitting,

▶ better interpret the relations between the variables,

▶ improve the prediction performance

Shrinkage procedures

▶ ℓ2 (ridge) regularization promotes the simplicity: shrink all the coefficients toward 0

▶ ℓ1 (lasso) regularization promotes the simplicity+sparsity: shrink all the coefficients toward 0 +
coefficients of non-signicant enough variables exactly equal to 0

▶ useful to capture the main effects and to interpret the relations between the variables

☞ concepts that extend to non-linear methods, e.g. neural nets
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