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Probabilities

• Using probabilities enables to model uncertainty that may result of in-
complete information or imprecise measurements

A random variable (or stochastic variable) is, roughly speaking, a vari-
able whose value results from a measurement (or an observation)
You can think of it as a small box:

� Every time you open the box, you get a different value.
� I will use this box analogy throughout the whole lecture and I encourage

you to ask yourself what the box can be in your own studies

• Formally a probability space is de�ned by (Ω,F ,P) where:
� Ω, the sample space, is the set of all possible outcomes

� E.g., all the possible combinations of your DNA with the one of your
{girl|boy}friend

� You may or may not be able to observe directly the outcome.
� F if the set of events where an event is a set containing zero or more

outcomes
� E.g., the event of "the DNA corresponds to a girl with blue eyes"
� An event is somehow more tangible and can generally be observed

� The probability measure P : F → [0, 1] is a function returning an event’s
probability (P("having a brown-eyed baby girl") = 0.0005)
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Continuous random variable

• A random variable associates a numerical value to outcomes

X : Ω→ R

� E.g., the weight of the baby at birth (assuming it solely depends on
DNA, which is quite false but it’s for the sake of the example)

� Since many computer science experiments are based on time measure-
ments, we focus on continuous variables

• Note: To distinguish random variables, which are complex objects, from
other mathematical objects, they will always be written in blue capital
letters in this set of slides (e.g., X )

• The probability measure on Ω induces probabilities on the values of X
� P(X = 0.5213) is generally 0 as the outcome never exactly matches
� P(0.5213 ≤ X ≤ 0.5214) may however be non-zero
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Probability distribution

A probability distribution (a.k.a. probability density function or p.d.f.) is
used to describe the probabilities of di�erent values occurring

• A random variable X has density fX , where fX is a non-negative and

integrable function, if: P[a ≤ X ≤ b] =

∫ b

a
fX (w) dw

P(1 ≤ X ≤ 6) = 0.8577298P(1 ≤ X ≤ 6) = 0.8577298
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Note: the X in 1 ≤ X ≤ 6
should be in blue...

• Note: people often confuse the sample space with the random variable.
Try to make the di�erence when modeling your system, it will help you
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Characterizing a random variable

The probability density function fully characterizes the random variable but
it is also complex object

• It may be symmetrical or not
• It may have one or several modes
• It may have a bounded support or not, hence the random variable may
have a minimal and/or a maximal value

• The median cuts the probabilities in half
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These are interesting aspects of fX but they barely summarize it
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Expected value and variance

• When one speaks of the "expected price", "expected height", etc. one
means the expected value of a random variable that is a price, a height,
etc.

E[X ] = x1p1 + x2p2 + . . .+ xkpk =

∫ ∞
−∞

xfX (x) dx

The expected value of X is the �average value� of X .

It is not the most probable value. The mean is one aspect of the
distribution of X . The median or the mode are other interesting aspects.

• The variance is a measure of how far the values of a random variable
are spread out from each other.
If a random variable X has the expected value (mean) µ = E[X ], then
the variance of X is given by:

Var(X ) = E
[
(X − µ)2

]
=

∫ ∞
−∞

(x − µ)2fX (x) dx

• The standard deviation σ is the square root of the variance. This nor-
malization allows to compare it with the expected value
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How to estimate the Expected value?

To empirically estimate the expected value of a random variable X , one
repeatedly measures observations of the variable and computes the arithmetic
mean of the results

This is called the sample mean

Unfortunately, if you repeat the estimation, you may get a di�erent value
since X is a random variable . . .
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Central Limit Theorem [CLT]

• Let {X1,X2, . . . ,Xn} be a random sample of size n (i.e., a sequence of
independent and identically distributed random variables with expected
values µ and variances σ2)

• The sample mean of these random variables is:

Sn =
1

n
(X1 + · · ·+ Xn)

Sn is a random variable too!

• It is unbiased, i.e., E[Sn] = E[X ]

• For large n's, the distribution of Sn is approximately normal with mean
µ and variance σ2

n

Sn −−−→
n→∞

N

(
µ,
σ2

n

)
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CLT Illustration: the mean smooths distributions

Start with an arbitrary distribution and compute the distribution of Sn for
increasing values of n.
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The Normal Distribution
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The smaller the variance the more �spiky� the distribution.

• Dark blue is less than one standard deviation from the mean. For the
normal distribution, this accounts for about 68% of the set.

• Two standard deviations from the mean (medium and dark blue) ac-
count for about 95%

• Three standard deviations (light, medium, and dark blue) account for
about 99.7%
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The Normal Distribution
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CLT consequence: con�dence interval
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When n is large:
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(
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≈ 95%

There is 95% of chance that the true mean lies within 2 σ√
n
of the sample

mean.
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