diff --git a/src/crawler/by_source/ipb_crawler.py b/src/crawler/by_source/ipb_crawler.py
new file mode 100644
index 0000000000000000000000000000000000000000..d3767c950874493850f6772ef67dfd9f7280a11d
--- /dev/null
+++ b/src/crawler/by_source/ipb_crawler.py
@@ -0,0 +1,92 @@
+import json
+from urllib.parse import parse_qs, urlencode, urljoin, urlparse
+
+from ptf.model_data import (
+    IssueData,
+    create_abstract,
+    create_articledata,
+    create_contributor,
+    create_extlink,
+    create_subj,
+)
+
+from crawler.base_crawler import BaseCollectionCrawler
+
+
+class IpbCrawler(BaseCollectionCrawler):
+    source_name = "International Press of Boston"
+    source_domain = "IPB"
+    source_website = "https://link.intlpress.com/"
+
+    def parse_collection_content(self, content):
+        collection_urlparsed = urlparse(self.collection_url)
+        collection_query = parse_qs(collection_urlparsed.query)
+
+        xissues = []
+        data = json.loads(content)
+        for volume in data["data"]["volumes"]:
+            for issue in volume["issues"]:
+                issue_query = {"periodicalId": collection_query["id"][0], "issueId": issue["id"]}
+                issue_url = (
+                    "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?"
+                    + urlencode(issue_query)
+                )
+
+                xissues.append(
+                    self.create_xissue(
+                        issue_url,
+                        str(volume["fYear"]),
+                        str(volume["volumeNum"]),
+                        str(issue["issueNum"]),
+                    )
+                )
+        return xissues
+
+    def parse_issue_content(self, content, xissue):
+        data = json.loads(content)
+        for index, article_dict in enumerate(data["data"]["content"]):
+            xissue.articles.append(self.parse_ipb_article(article_dict, xissue, index))
+
+    def parse_ipb_article(self, article_dict: dict, xissue: IssueData, index: int):
+        if not xissue.pid:
+            raise ValueError("You must set xissue.pid before parsing an article")
+        if not xissue.url:
+            raise ValueError("You must set xissue.url before parsing an article")
+
+        xarticle = create_articledata()
+        xarticle.lang = "en"
+        xarticle.pid = xissue.pid + "_a" + str(index)
+        xarticle.doi = article_dict["doi"].removeprefix("https://dx.doi.org/")
+        if xarticle.doi == "":
+            xarticle.doi = None
+
+        ext_link = create_extlink(
+            rel="source",
+            location=urljoin("https://link.intlpress.com/JDetail/", article_dict["id"]),
+            metadata=self.source_domain,
+        )
+        xarticle.ext_links.append(ext_link)
+        xarticle.title_tex = article_dict["title"]
+        xarticle.fpage = article_dict["startPage"] or ""
+        xarticle.lpage = article_dict["endPage"] or ""
+
+        for kwd in article_dict["keyword"].split(","):
+            xarticle.kwds.append(create_subj(type="kwd", lang="en", value=kwd))
+
+        if article_dict["mscValue"] != "":
+            xarticle.kwds.append(
+                create_subj(type="msc", lang="en", value=article_dict["mscValue"])
+            )
+
+        if article_dict["fAbstract"] != "":
+            xarticle.abstracts.append(
+                create_abstract(lang="en", tag="abstract", value_tex=article_dict["fAbstract"])
+            )
+
+        for author in article_dict["authors"]:
+            xarticle.contributors.append(
+                create_contributor(
+                    string_name=author["fullName"], role="author", orcid=author["orcid"]
+                )
+            )
+        return xarticle
diff --git a/src/crawler/data/all_cols.json b/src/crawler/data/all_cols.json
index 39179076978afee1e652e381918e15a473e7487a..417fe4c6ee09f5eba5b2d0ada4e8f8a3284c7e87 100644
--- a/src/crawler/data/all_cols.json
+++ b/src/crawler/data/all_cols.json
@@ -1786,7 +1786,7 @@
     },
     "HHA": {
         "sources": {
-            "IPB": "https://link.intlpress.com/journals/journalList?p=5&id=1804415065855684610"
+            "IPB": "https://link.intlpress.com/api/bgcloud-front/periodical/detail?id=1804415065855684610"
         },
         "pid": "HHA",
         "state": "",
diff --git a/src/crawler/factory.py b/src/crawler/factory.py
index 7d168cda1d4a3fc356dabd14d59515b835033339..9e7d48028ab77a9b13c93ee49a1a3588cb467af3 100644
--- a/src/crawler/factory.py
+++ b/src/crawler/factory.py
@@ -16,6 +16,7 @@ from .by_source.ems_crawler import EmsCrawler
 from .by_source.eudml_crawler import EudmlCrawler
 from .by_source.hdml_crawler import HdmlCrawler
 from .by_source.impan_crawler import ImpanCrawler
+from .by_source.ipb_crawler import IpbCrawler
 from .by_source.lofpl_crawler import LofplCrawler
 from .by_source.mathbas_crawler import MathbasCrawler
 from .by_source.mathnetru_crawler import MathnetruCrawler
@@ -40,6 +41,7 @@ crawler_classes = (
     EudmlCrawler,
     HdmlCrawler,
     ImpanCrawler,
+    IpbCrawler,
     IsrpCrawler,
     LofplCrawler,
     MathbasCrawler,
diff --git a/src/crawler/tests/data/by_source/IPB_test_data.json b/src/crawler/tests/data/by_source/IPB_test_data.json
new file mode 100644
index 0000000000000000000000000000000000000000..32d34d294672de420f4e989812c7b09c89b2a156
--- /dev/null
+++ b/src/crawler/tests/data/by_source/IPB_test_data.json
@@ -0,0 +1,5706 @@
+{
+  "crawl_article": {
+    "IPB": {
+      "HHA": {
+        "HHA_2006_8_1": {
+          "HHA_2006_8_1_a8": {
+            "input": {
+              "article": {
+                "abstracts": [],
+                "bibitems": [],
+                "contributors": [],
+                "date_published_iso_8601_date_str": null,
+                "doi": null,
+                "ext_links": [],
+                "ids": [],
+                "kwds": [],
+                "lang": "und",
+                "pid": "HHA_2006_8_1_a8",
+                "streams": [],
+                "title_tex": "",
+                "trans_title_html": "",
+                "trans_title_tex": "",
+                "translations": [],
+                "url": null
+              },
+              "issue": {
+                "articles": [
+                  {
+                    "abstracts": [],
+                    "bibitems": [],
+                    "contributors": [],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": null,
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1806151110459039745",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": ""
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2006_8_1_a0",
+                    "streams": [],
+                    "title_tex": "Table of Contents",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "We prove that every stable, presentable model category can be enriched in a natural way over symmetric spectra. As a consequence of the general theory, every object in such a model category has an associated homotopy endomorphism ring spectrum. Basic properties of these invariants are established.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Daniel Dugger"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2006.v8.n1.a1",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805807248658022402",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "model category"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "symmetric spectra"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "55U35"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2006_8_1_a1",
+                    "streams": [],
+                    "title_tex": "Spectral enrichments of model categories",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "Directed Algebraic Topology is a recent field, deeply linked with ordinary and higher dimensional Category Theory. A ‘directed space’, e.g. an ordered topological space, has directed homotopies (which are generally non-reversible) and fundamental <italic>n-categories</italic> (replacing the fundamental $n$-groupoids of the classical case). Finding a simple model of the latter is a nontrivial problem, whose solution gives relevant information on the given ‘space’; a problem which is also of interest in general Category Theory, as it requires equivalence relations which are more general than categorical equivalence. Taking on a previous work on ‘The shape of a category up to directed homotopy’, we study now the fundamental 2-category of a directed space. All the notions of 2-category theory used here are explicitly reviewed.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Marco Grandis"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2006.v8.n1.a2",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805807251141050369",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "2-functors"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "local adjunctions"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "homotopy theory"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "directed algebraic topology"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "fundamental 2-category"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "18A40,18D05,55Pxx,55Qxx,55Uxx"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2006_8_1_a2",
+                    "streams": [],
+                    "title_tex": "Modelling fundamental 2-categories for directed homotopy",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "This paper is an exposition of the ideas and methods of Cisinksi, in the context of $A$-presheaves on a small Grothendieck site, where $A$ is an arbitrary test category in the sense of Grothendieck. The homotopy theory for the category of simplicial presheaves and each of its localizations can be modelled by $A$-presheaves in the sense that there is a corresponding model structure for $A$-presheaves with an equivalent homotopy category. The theory specializes, for example, to the homotopy theories of cubical sets and cubical presheaves, and gives a cubical model for motivic homotopy theory. The applications of Cisinski’s ideas are explained in some detail for cubical sets.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "J. F. Jardine"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2006.v8.n1.a3",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805807254257418242",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "test categories"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "weak equivalence classes"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "cubical sets and presheaves"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "14F35,18F20,55P60"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2006_8_1_a3",
+                    "streams": [],
+                    "title_tex": "Categorical homotopy theory",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "Working in the context of categorical groups, we show that the semidirect product provides a biequivalence between actions and points. From this biequivalence, we deduce a two-dimensional classification of split extensions of categorical groups, as well as the universal property of the holomorph of a categorical group. We also discuss the link between the holomorph and inner autoequivalences.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Stefano Kasangian"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Giuseppe Metere"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Enrico M. Vitale"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2006.v8.n1.a4",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805807257117933570",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "categorical groups"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "semidirect product"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "split extensions"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "holomorph"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "18D05,18D10,18D35,18G50"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2006_8_1_a4",
+                    "streams": [],
+                    "title_tex": "Split extensions, semidirect product and holomorph of categorical groups",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "Let $P^n(p)$ be an $n$-dimensional mod $p$ Moore space and $V^n$ be the mapping cone of an Adams map $A:P^{n-1}(p) \\rightarrow P^{n-2p+1}(p)$. This paper gives an unstable splitting of $V^m \\wedge V^n$ for a prime $p \\geq 5$. The proof is based on explicit calculations of $[V^{n+2p-1},V^n]$. As an application, we define a Samelson product on $[V^*,\\Omega X]$ and prove that it satisfies anticommutativity and the Jacobi identity.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Takahisa Shiina"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2006.v8.n1.a5",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805807260968304642",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "$V(1)$"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Samelson product"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "55P15,55Q15"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2006_8_1_a5",
+                    "streams": [],
+                    "title_tex": "Unstable splitting of $V(1) ^ V(1)$ and its applications",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "The holomorphic (or semi-topological) $K$-theory of a smooth projective variety sits between the algebraic $K$-theory of the variety and the topological $K$-theory of the underlying topological space. We describe how to define a family of dbar operators on holomorphic $K$-theory in a manner analogous to Atiyah’s construction of a family of elliptic operators in topological $K$-theory. In the process, we prove a result akin to Bott periodicity for holomorphic mapping spaces. These results first appeared in the author’s Stanford University Ph.D. thesis under the direction of Ralph Cohen.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Dana Powell Roland"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2006.v8.n1.a6",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805807263241617410",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "holomorphic $K$-theory"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "dbar operator"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Bott periodicity"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "19L47,55P91"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2006_8_1_a6",
+                    "streams": [],
+                    "title_tex": "The operator dbar in holomorphic $K$-theory",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "We establish a general method to produce cofibrant approximations in the model category $U_S(C,D)$ of $S$-valued $C$-indexed diagrams with $D$-weak equivalences and $D$-fibrations. We also present explicit examples of such approximations. Here, $S$ is an arbitrary cofibrantly generated simplicial model category, and $D ⊂ C$ are small categories. An application to the notion of homotopy colimit is presented.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Paul Balmer"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Michel Matthey"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2006.v8.n1.a7",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805807266097938434",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "diagram category"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "cofibrant approximation"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "codescent"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "18G55,55U10"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2006_8_1_a7",
+                    "streams": [],
+                    "title_tex": "Codescent theory II: cofibrant approximations",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "We study Hopf algebra structures on polynomial algebras generated by coloured trees. In particular, we establish the existence of a $2n$-parameter family of such structures for trees coloured by $n$ colours.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Pepijn van der Laan"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Ieke Moerdijk"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2006.v8.n1.a8",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805807268597743617",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "Hopf algebras"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "trees"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "deformations"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "16Wxx,18D50"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2006_8_1_a8",
+                    "streams": [],
+                    "title_tex": "Families of Hopf algebra of trees and pre-lie algebras",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "Let $f\\colon E \\to B$ be a map between closed connected orientable manifolds. In this note, we give a necessary condition for $f$ to be a manifold fibration. In particular, we show that if $F \\hookrightarrow E \\stackrel{f}{\\to} B$ is a fibration where $F=f^{-1}(b)$, $E$ and $B$ are closed connected triangulated orientable manifolds and $B$ is aspherical, then $f|_{E^{(n)}}\\colon E^{(n)} \\to B$ is surjective, where $E^{(n)}$ denotes the $n$-th skeleton of $E$ and $n=\\dim B$.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Daciberg Gonçalves"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Peter Wong"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2006.v8.n1.a9",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805807270728450050",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "obstruction theory"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "fibrations"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "local coefficients"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Shapiro’s Lemma"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "55M20,55R20,55T10,55S35"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2006_8_1_a9",
+                    "streams": [],
+                    "title_tex": "Fibrations over aspherical manifolds",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "Locally partial-ordered spaces (local po-spaces) have been used to model concurrent systems. We provide equivalences for these spaces by constructing a model category containing the category of local po-spaces. We show that the category of simplicial presheaves on local po-spaces can be given Jardine’s model structure, in which we identify the weak equivalences between local po-spaces. In the process, we give an equivalence between the category of sheaves on a local po-space and the category of étale bundles over a local po-space. Finally, we describe a localization that should provide a good framework for studying concurrent systems.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Peter Bubenik"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Krzysztof Worytkiewicz"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2006.v8.n1.a10",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805807273077260289",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "local po-spaces (local pospaces)"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "abstract homotopy theory"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "model categories"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "concurrency"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "simplicial presheaves"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "sheaves"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "étale bundles"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "directed homotopy (dihomotopy)"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "context"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "18G55,55U35,68Q85,18F20,55U10"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2006_8_1_a10",
+                    "streams": [],
+                    "title_tex": "A model category for local po-spaces",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  }
+                ],
+                "number": "1",
+                "pid": "HHA_2006_8_1",
+                "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134471642886146",
+                "volume": "8",
+                "year": "2006"
+              },
+              "urls": {}
+            },
+            "metadata": {
+              "collection_url": "https://link.intlpress.com/api/bgcloud-front/periodical/detail?id=1804415065855684610"
+            },
+            "output": {
+              "abstracts": [],
+              "bibitems": [],
+              "contributors": [],
+              "date_published_iso_8601_date_str": null,
+              "doi": null,
+              "ext_links": [],
+              "ids": [],
+              "kwds": [],
+              "lang": "und",
+              "pid": "HHA_2006_8_1_a8",
+              "streams": [],
+              "title_tex": "",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            }
+          },
+          "HHA_2006_8_1_a9": {
+            "input": {
+              "article": {
+                "abstracts": [],
+                "bibitems": [],
+                "contributors": [],
+                "date_published_iso_8601_date_str": null,
+                "doi": null,
+                "ext_links": [],
+                "ids": [],
+                "kwds": [],
+                "lang": "und",
+                "pid": "HHA_2006_8_1_a9",
+                "streams": [],
+                "title_tex": "",
+                "trans_title_html": "",
+                "trans_title_tex": "",
+                "translations": [],
+                "url": null
+              },
+              "issue": {
+                "articles": [
+                  {
+                    "abstracts": [],
+                    "bibitems": [],
+                    "contributors": [],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": null,
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1806151110459039745",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": ""
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2006_8_1_a0",
+                    "streams": [],
+                    "title_tex": "Table of Contents",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "We prove that every stable, presentable model category can be enriched in a natural way over symmetric spectra. As a consequence of the general theory, every object in such a model category has an associated homotopy endomorphism ring spectrum. Basic properties of these invariants are established.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Daniel Dugger"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2006.v8.n1.a1",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805807248658022402",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "model category"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "symmetric spectra"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "55U35"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2006_8_1_a1",
+                    "streams": [],
+                    "title_tex": "Spectral enrichments of model categories",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "Directed Algebraic Topology is a recent field, deeply linked with ordinary and higher dimensional Category Theory. A ‘directed space’, e.g. an ordered topological space, has directed homotopies (which are generally non-reversible) and fundamental <italic>n-categories</italic> (replacing the fundamental $n$-groupoids of the classical case). Finding a simple model of the latter is a nontrivial problem, whose solution gives relevant information on the given ‘space’; a problem which is also of interest in general Category Theory, as it requires equivalence relations which are more general than categorical equivalence. Taking on a previous work on ‘The shape of a category up to directed homotopy’, we study now the fundamental 2-category of a directed space. All the notions of 2-category theory used here are explicitly reviewed.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Marco Grandis"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2006.v8.n1.a2",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805807251141050369",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "2-functors"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "local adjunctions"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "homotopy theory"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "directed algebraic topology"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "fundamental 2-category"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "18A40,18D05,55Pxx,55Qxx,55Uxx"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2006_8_1_a2",
+                    "streams": [],
+                    "title_tex": "Modelling fundamental 2-categories for directed homotopy",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "This paper is an exposition of the ideas and methods of Cisinksi, in the context of $A$-presheaves on a small Grothendieck site, where $A$ is an arbitrary test category in the sense of Grothendieck. The homotopy theory for the category of simplicial presheaves and each of its localizations can be modelled by $A$-presheaves in the sense that there is a corresponding model structure for $A$-presheaves with an equivalent homotopy category. The theory specializes, for example, to the homotopy theories of cubical sets and cubical presheaves, and gives a cubical model for motivic homotopy theory. The applications of Cisinski’s ideas are explained in some detail for cubical sets.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "J. F. Jardine"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2006.v8.n1.a3",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805807254257418242",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "test categories"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "weak equivalence classes"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "cubical sets and presheaves"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "14F35,18F20,55P60"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2006_8_1_a3",
+                    "streams": [],
+                    "title_tex": "Categorical homotopy theory",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "Working in the context of categorical groups, we show that the semidirect product provides a biequivalence between actions and points. From this biequivalence, we deduce a two-dimensional classification of split extensions of categorical groups, as well as the universal property of the holomorph of a categorical group. We also discuss the link between the holomorph and inner autoequivalences.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Stefano Kasangian"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Giuseppe Metere"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Enrico M. Vitale"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2006.v8.n1.a4",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805807257117933570",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "categorical groups"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "semidirect product"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "split extensions"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "holomorph"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "18D05,18D10,18D35,18G50"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2006_8_1_a4",
+                    "streams": [],
+                    "title_tex": "Split extensions, semidirect product and holomorph of categorical groups",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "Let $P^n(p)$ be an $n$-dimensional mod $p$ Moore space and $V^n$ be the mapping cone of an Adams map $A:P^{n-1}(p) \\rightarrow P^{n-2p+1}(p)$. This paper gives an unstable splitting of $V^m \\wedge V^n$ for a prime $p \\geq 5$. The proof is based on explicit calculations of $[V^{n+2p-1},V^n]$. As an application, we define a Samelson product on $[V^*,\\Omega X]$ and prove that it satisfies anticommutativity and the Jacobi identity.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Takahisa Shiina"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2006.v8.n1.a5",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805807260968304642",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "$V(1)$"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Samelson product"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "55P15,55Q15"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2006_8_1_a5",
+                    "streams": [],
+                    "title_tex": "Unstable splitting of $V(1) ^ V(1)$ and its applications",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "The holomorphic (or semi-topological) $K$-theory of a smooth projective variety sits between the algebraic $K$-theory of the variety and the topological $K$-theory of the underlying topological space. We describe how to define a family of dbar operators on holomorphic $K$-theory in a manner analogous to Atiyah’s construction of a family of elliptic operators in topological $K$-theory. In the process, we prove a result akin to Bott periodicity for holomorphic mapping spaces. These results first appeared in the author’s Stanford University Ph.D. thesis under the direction of Ralph Cohen.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Dana Powell Roland"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2006.v8.n1.a6",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805807263241617410",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "holomorphic $K$-theory"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "dbar operator"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Bott periodicity"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "19L47,55P91"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2006_8_1_a6",
+                    "streams": [],
+                    "title_tex": "The operator dbar in holomorphic $K$-theory",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "We establish a general method to produce cofibrant approximations in the model category $U_S(C,D)$ of $S$-valued $C$-indexed diagrams with $D$-weak equivalences and $D$-fibrations. We also present explicit examples of such approximations. Here, $S$ is an arbitrary cofibrantly generated simplicial model category, and $D ⊂ C$ are small categories. An application to the notion of homotopy colimit is presented.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Paul Balmer"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Michel Matthey"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2006.v8.n1.a7",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805807266097938434",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "diagram category"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "cofibrant approximation"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "codescent"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "18G55,55U10"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2006_8_1_a7",
+                    "streams": [],
+                    "title_tex": "Codescent theory II: cofibrant approximations",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "We study Hopf algebra structures on polynomial algebras generated by coloured trees. In particular, we establish the existence of a $2n$-parameter family of such structures for trees coloured by $n$ colours.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Pepijn van der Laan"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Ieke Moerdijk"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2006.v8.n1.a8",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805807268597743617",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "Hopf algebras"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "trees"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "deformations"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "16Wxx,18D50"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2006_8_1_a8",
+                    "streams": [],
+                    "title_tex": "Families of Hopf algebra of trees and pre-lie algebras",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "Let $f\\colon E \\to B$ be a map between closed connected orientable manifolds. In this note, we give a necessary condition for $f$ to be a manifold fibration. In particular, we show that if $F \\hookrightarrow E \\stackrel{f}{\\to} B$ is a fibration where $F=f^{-1}(b)$, $E$ and $B$ are closed connected triangulated orientable manifolds and $B$ is aspherical, then $f|_{E^{(n)}}\\colon E^{(n)} \\to B$ is surjective, where $E^{(n)}$ denotes the $n$-th skeleton of $E$ and $n=\\dim B$.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Daciberg Gonçalves"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Peter Wong"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2006.v8.n1.a9",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805807270728450050",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "obstruction theory"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "fibrations"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "local coefficients"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Shapiro’s Lemma"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "55M20,55R20,55T10,55S35"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2006_8_1_a9",
+                    "streams": [],
+                    "title_tex": "Fibrations over aspherical manifolds",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "Locally partial-ordered spaces (local po-spaces) have been used to model concurrent systems. We provide equivalences for these spaces by constructing a model category containing the category of local po-spaces. We show that the category of simplicial presheaves on local po-spaces can be given Jardine’s model structure, in which we identify the weak equivalences between local po-spaces. In the process, we give an equivalence between the category of sheaves on a local po-space and the category of étale bundles over a local po-space. Finally, we describe a localization that should provide a good framework for studying concurrent systems.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Peter Bubenik"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Krzysztof Worytkiewicz"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2006.v8.n1.a10",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805807273077260289",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "local po-spaces (local pospaces)"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "abstract homotopy theory"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "model categories"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "concurrency"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "simplicial presheaves"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "sheaves"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "étale bundles"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "directed homotopy (dihomotopy)"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "context"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "18G55,55U35,68Q85,18F20,55U10"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2006_8_1_a10",
+                    "streams": [],
+                    "title_tex": "A model category for local po-spaces",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  }
+                ],
+                "number": "1",
+                "pid": "HHA_2006_8_1",
+                "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134471642886146",
+                "volume": "8",
+                "year": "2006"
+              },
+              "urls": {}
+            },
+            "metadata": {
+              "collection_url": "https://link.intlpress.com/api/bgcloud-front/periodical/detail?id=1804415065855684610"
+            },
+            "output": {
+              "abstracts": [],
+              "bibitems": [],
+              "contributors": [],
+              "date_published_iso_8601_date_str": null,
+              "doi": null,
+              "ext_links": [],
+              "ids": [],
+              "kwds": [],
+              "lang": "und",
+              "pid": "HHA_2006_8_1_a9",
+              "streams": [],
+              "title_tex": "",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            }
+          }
+        },
+        "HHA_2023_25_2": {
+          "HHA_2023_25_2_a1": {
+            "input": {
+              "article": {
+                "abstracts": [],
+                "bibitems": [],
+                "contributors": [],
+                "date_published_iso_8601_date_str": null,
+                "doi": null,
+                "ext_links": [],
+                "ids": [],
+                "kwds": [],
+                "lang": "und",
+                "pid": "HHA_2023_25_2_a1",
+                "streams": [],
+                "title_tex": "",
+                "trans_title_html": "",
+                "trans_title_tex": "",
+                "translations": [],
+                "url": null
+              },
+              "issue": {
+                "articles": [
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "We give a new, elegant description of the Tate duality pairing as a Brauer–Manin pairing for associated embedding problems and prove a new theorem on the cup product.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Ambrus Pál"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Tomer M. Schlank"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a1",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805437884710914",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "cup product"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "embedding problem"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Brauer–Manin pairing"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "11R34,55N10"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a0",
+                    "streams": [],
+                    "title_tex": "Two theorems on cohomological pairings",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "The self-closeness number of a connected CW complex is the least integer $n$ such that any of its self-maps inducing an isomorphism in $\\pi_\\ast$ for $\\ast \\leqslant n$ is a homotopy equivalence. We prove that under a mild condition, the self-closeness number of a non-simply-connected finite complex coincides with that of its universal cover whenever the universal cover is a finite $\\mathrm{H}_0$-space or a finite co-$\\mathrm{H}_0$-space. We give several interesting examples to which the result applies.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Yichen Tong"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a2",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805441001078786",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "self-closeness number"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "group of self-equivalences"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "$\\mathrm{H}_0$-space"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "co-$\\mathrm{H}_0$-space"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "$p$-universal space"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "55P10,55S37"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a1",
+                    "streams": [],
+                    "title_tex": "Self-closeness numbers of non-simply-connected spaces",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "For a finite group $G$, we define the $G$-cobordism category in dimension two. We show there is a one-to-one correspondence between the connected components of its classifying space and the abelianization of $G$. Also, we find an isomorphism of its fundamental group onto the direct sum $\\mathbb{Z} \\oplus \\Omega^{SO}_{2} (BG)$, where $\\Omega^{SO}_{2} (BG)$ is the free oriented $G$-bordism group in dimension two, and we study the classifying space of some important subcategories. We obtain the classifying space has the homotopy type of the product $G/[G,G] \\times S^1 \\times X^G$, where $\\pi_1 (X^G) = \\Omega^{SO}_{2} (BG)$. Finally, we present some results about the classification of $G$-topological quantum field theories in dimension two.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Carlos Segovia"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a3",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805444125835265",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "cobordism category"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "classifying space"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "$G$-cobordism"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "55P91,57R85"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a2",
+                    "streams": [],
+                    "title_tex": "The classifying space of the 1+1 dimensional $G$-cobordism category",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "$\\def\\Emb{\\overline{Emb}}$We show that for the spaces of spherical embeddings modulo immersions $\\Emb (S^n, S^{n+q})$ and long embeddings modulo immersions $\\Emb_\\partial (D^n, D^{n+q})$, the set of connected components is isomorphic to $\\pi_{n+1} (SG, SG_q)$ for $q \\geqslant 3$. As a consequence, we show that all the terms of the long exact sequence of the triad $(SG; SO, SG_q)$ have a geometric meaning relating to spherical embeddings and immersions.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Neeti Gauniyal"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a4",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805447560970242",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "embeddings modulo immersions"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "spherical embedding"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "framed disked embedding"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "57R40,57R42,58D10"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a3",
+                    "streams": [],
+                    "title_tex": "Haefliger’s approach for spherical knots modulo immersions",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "$\\def\\F{\\mathbb{F}} \\def\\O{\\mathbb{O}} \\def\\R{\\mathbb{R}} \\def\\C{\\mathbb{C}} \\def\\H{\\mathbb{H}}$We analyse the homotopy solvability of the classical Lie groups $O(n)$, $U(n)$, $Sp(n)$ and derive its heredity by closed subgroups. In particular, the homotopy solvability of compact Lie groups is shown.\nThen, we study the homotopy solvability of the loop spaces $\\Omega (G_{n,m} (\\F))$, $\\Omega (V_{n,m} (\\F))$ and $\\Omega (F_{n; n_1,\\dotsc,n_k}(\\F))$ for Grassmann $G_{n,m} (\\F)$, Stiefel $V_{n,m} (\\F)$ and generalised flag $F_{n; n_1,\\dotsc,n_k}(\\F)$ manifolds for $\\F = \\R, \\C$, the field of reals or complex numbers and $\\H$, the skew $\\R$-algebra of quaternions. Furthermore, the homotopy solvability of the loop space $\\Omega (\\O P^2)$ for the Cayley plane $\\O P^2$ is established as well.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Marek Golasiński"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a5",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805451327455234",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "Cayley plane"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Grassmann (generalised flag and Stiefel) manifold"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "$H$-space"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "localization"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "$n$-fold commutator map"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "nilpotent space"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "nilpotency (solvability) class"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "loop space"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Postnikov system"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Samelson product"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "smash product"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "suspension space"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "wedge sum"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Whitehead product"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "55P15,14M17,22C05,55P45,55R35"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a4",
+                    "streams": [],
+                    "title_tex": "The homotopy solvability of compact Lie groups and homogenous topological spaces",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "In this paper we show that the functor sending a stratified topological space $S$ to the $\\infty$-category of constructible (hyper)sheaves on $S$ with coefficients in a large class of presentable $\\infty$-categories is homotopy-invariant. To do this, we first establish a number of results for locally constant (hyper)sheaves. For example, if $X$ is a locally weakly contractible topological space and $\\mathcal{E}$ is a presentable $\\infty$-category, then we give a concrete formula for the constant hypersheaf functor $\\mathcal{E} \\to \\mathrm{Sh}^\\mathrm{hyp} (X; \\mathcal{E})$, implying that the constant hypersheaf functor is a right adjoint, and is fully faithful if $X$ is also weakly contractible. It also lets us prove a general monodromy equivalence and categorical Künneth formula for locally constant hypersheaves.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Peter J. Haine"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Mauro Porta"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Jean-Baptiste Teyssier"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a6",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805454578040834",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "locally constant sheaf"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "constructible sheaf"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "hypersheaf"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "homotopy-invariance"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "32S60,55N05,55N30,55P55"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a5",
+                    "streams": [],
+                    "title_tex": "The homotopy-invariance of constructible sheaves",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "We consider the space $\\Lambda M := H^1 (S^1, M)$ of loops of Sobolev class $H^1$ of a compact smooth manifold $M$, the so-called free loop space of $M$. We take quotients $\\Lambda M / G$ where $G$ is a finite subgroup of $O(2)$ acting by linear reparametrization of $S^1$. We use the existence of transfer maps $\\operatorname{tr} : H_\\ast (\\Lambda M / G) \\to H_\\ast (\\Lambda M)$ to define a homology product on $\\Lambda M / G$ via the Chas–Sullivan loop product. We call this product $P_G$ the transfer product. The involution $\\vartheta : \\Lambda M \\to \\Lambda M$ which reverses orientation, $\\vartheta ( \\gamma (t) := \\gamma (1-t)$, is of particular interest to us. We compute $H_\\ast (\\Lambda S^n / \\vartheta ; \\mathbb{Q}), n \\gt 2$, and the product\\[P_\\vartheta : H_i (\\Lambda S^n / \\vartheta ; \\mathbb{Q}) \\times H_j (\\Lambda S^n / \\vartheta ; \\mathbb{Q)} \\to H_{i+j-n} (\\Lambda Sn/\\vartheta ; \\mathbb{Q})\\]associated to orientation reversal. Rationally P\\vartheta can be realized “geometrically” using the concatenation of equivalence classes of loops. There is a qualitative difference between the homology of $\\Lambda S^n / \\vartheta$ and the homology of $\\Lambda S^n / G$ when $G \\subset S^1 \\subset O(2)$ does not “contain” the orientation reversal. This might be interesting with respect to possible differences in the number of closed geodesics between non-reversible and reversible Finsler metrics on $S^n$, the latter might always be infinite.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Philippe Kupper"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a7",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805458218696705",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "loop space homology"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "transfer for a finite group action"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "homotopy"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "55P50,55R12,58E05"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a6",
+                    "streams": [],
+                    "title_tex": "Homology transfer products on free loop spaces: orientation reversal on spheres",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "Let $e_n$ be the connective cover of the Morava $E$-theory spectrum $E_n$ of height $n$. In this paper we compute its homology $H_\\ast (e_n; \\mathbb{F}_p)$ for any prime $p$ and $n \\leqslant 4$ up to possible multiplicative extensions. In order to accomplish this we show that the Künneth spectral sequence based on an $\\mathbb{E}_3$-algebra $R$ is multiplicative when the $R$-modules in question are commutative Salgebras. We then apply this result by working over $BP$ which is known to be an $\\mathbb{E}_4$-algebra.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Lukas Kattän"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Sean Tilson"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a8",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805461607694338",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "highly structured ring spectra"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Künneth spectral sequence"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Morava $E$-theory"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "55P43,55T15,55N20"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a7",
+                    "streams": [],
+                    "title_tex": "The homology of connective Morava $E$-theory with coefficients in $\\mathbb{F}_p$",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "We generalize Bousfield–Friedlander’s Theorem and Hirschhorn’s Localization Theorem to settings where the hypotheses are not satisfied at the expense of obtaining semi-model categories instead of model categories. We use such results to answer, in the world of semi-model categories, an open problem posed by May–Ponto about the existence of Bousfield localizations for Hurewicz and mixed type model structures (on spaces and chain complexes). We also provide new applications that were not available before, e.g. stabilization of non-cofibrantly generated model structures or applications to mathematical physics.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Victor Carmona"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a9",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805465424510977",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "Bousfield localization"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "idempotent functor"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "model category"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Hurewicz and mixed model structures"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "stable model category"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "homological algebra"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "18G30,18G55,55U35"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a8",
+                    "streams": [],
+                    "title_tex": "When Bousfield localizations and homotopy idempotent functors meet again",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "This paper establishes several results for coalgebraic structure in $\\infty$-categories, specifically with connections to the spectral noncommutative geometry of cobordism theories. We prove that the categories of comodules and modules over a bialgebra always admit suitably structured monoidal structures in which the tensor product is taken in the ambient category (as opposed to a relative (co)tensor product over the underlying algebra or coalgebra of the bialgebra). We give two examples of higher coalgebraic structure: first, following Hess we show that for a map of $\\mathbb{E}_n$-ring spectra $\\varphi : A \\to B$, the associated $\\infty$-category of descent data is equivalent to the $\\infty$-category of comodules over $B \\otimes_A B$, the so-called descent coring; secondly, we show that Thom spectra are canonically equipped with a highly structured comodule structure which is equivalent to the $\\infty$-categorical Thom diagonal of Ando, Blumberg, Gepner, Hopkins and Rezk (which we describe explicitly) and that this highly structured diagonal decomposes the Thom isomorphism for an oriented Thom spectrum in the expected way indicating that Thom spectra are good examples of spectral noncommutative torsors.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Jonathan Beardsley"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a10",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805469077749761",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "Thom spectrum"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "infinity category"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "coalgebra"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "bialgebra"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "16T10,18F20,55N22,55P43"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a9",
+                    "streams": [],
+                    "title_tex": "On bialgebras, comodules, descent data and Thom spectra in $\\infty$-categories",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "Persistence modules have a natural home in the setting of stratified spaces and constructible cosheaves. In this article, we first give explicit constructible cosheaves for common data-motivated persistence modules, namely, for modules that arise from zig‑zag filtrations (including monotone filtrations), and for augmented persistence modules (which encode the data of instantaneous events). We then identify an equivalence of categories between a particular notion of zig‑zag modules and the combinatorial entrance path category on stratified $\\mathbb{R}$. Finally, we compute the algebraic $K$-theory of generalized zig‑zag modules and describe connections to both Euler curves and $K_0$ of the monoid of persistence diagrams as described by Bubenik and Elchesen.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Ryan Grady"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Anna Schenfisch"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a11",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805472462553090",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "persistence module"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "zig-zag persistence"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "cosheaf"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "algebraic $K$-theory"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "18F25,19M05,32S60"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a10",
+                    "streams": [],
+                    "title_tex": "Zig-zag modules: cosheaves and $k$-theory",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "We show a Gottlieb element in the rational homotopy of a simply connected space $X$ implies a structural result for the Sullivan minimal model, with different results depending on parity. In the even-degree case, we prove a rational Gottlieb element is a terminal homotopy element. This fact allows us to complete an argument of Dupont to prove an even-degree Gottlieb element gives a free factor in the rational cohomology of a formal space of finite type. We apply the odd-degree result to affirm a special case of the $2N$-conjecture on Gottlieb elements of a finite complex. We combine our results to make a contribution to the realization problem for the classifying space $\\operatorname{\\mathit{B}aut}_1 (X)$. We prove a simply connected space $X$ satisfying $\\operatorname{\\mathit{B}aut}_1 (X_\\mathbb{Q}) \\simeq S^{2n}_\\mathbb{Q}$ must have infinite-dimensional rational homotopy and vanishing rational Gottlieb elements above degree $2n-1$ for $n=1,2,3$.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Gregory Lupton"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Samuel Bruce Smith"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a12",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805476673634306",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "Gottlieb element"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Sullivan minimal model"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "classifying space for a fibration"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "derivation"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "55P62,55R35,55R15"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a11",
+                    "streams": [],
+                    "title_tex": "The structuring effect of a Gottlieb element on the Sullivan model of a space",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "We introduce lifespan functors, which are endofunctors on the category of persistence modules that filter out intervals from barcodes according to their boundedness properties. They can be used to classify injective and projective objects in the category of barcodes and the category of pointwise finite-dimensional persistence modules. They also naturally appear in duality results for absolute and relative versions of persistent (co)homology, generalizing previous results in terms of barcodes. Due to their functoriality, we can apply these results to morphisms in persistent homology that are induced by morphisms between filtrations. This lays the groundwork for the efficient computation of barcodes for images, kernels, and co-kernels of such morphisms.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Ulrich Bauer"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Maximilian Schmahl"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a13",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805480104574977",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "barcode"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "persistent homology"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "duality"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "injectivity"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "projectivity"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "16G20,18G05,55U10,57N15"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a12",
+                    "streams": [],
+                    "title_tex": "Lifespan functors and natural dualities in persistent homology",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "We prove that the Díaz–Park sharpness conjecture holds for saturated fusion systems defined on a Sylow $p$-subgroup of the group $\\mathrm{G}_2 (p)$, for $p \\geqslant 5$.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Valentina Grazian"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Ettore Marmo"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a14",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805483300634626",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "sharpness"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "homology decomposition"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "classifying space"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "fusion system"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Mackey functor"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "20D20,20J06,55R35,55R40"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a13",
+                    "streams": [],
+                    "title_tex": "Sharpness of saturated fusion systems on a Sylow $p$-subgroup of $\\mathrm{G}_2 (p)$",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "By applying Gröbner basis theory to spectral sequences algebras, we develop a new computational methodology applicable to any Leray–Serre spectral sequence for which the cohomology of the base space is the quotient of a finitely generated polynomial algebra. We demonstrate the procedure by deducing the cohomology of the free loop space of flag manifolds, presenting a significant extension over previous knowledge of the topology of free loop spaces. A complete flag manifold is the quotient of a Lie group by its maximal torus. The rank of a flag manifold is the dimension of the maximal torus of the Lie group. The rank $2$ complete flag manifolds are $SU(3)/T^2$, $Sp(2)/T^2$, $\\mathit{Spin}(4)/T^2$, $\\mathit{Spin}(5)/T^2$ and $G_2/T^2$. In this paper we calculate the cohomology of the free loop space of the rank $2$ complete flag manifolds.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Matthew Burfitt"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Jelena Grbić"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a15",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805486165344258",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "cohomology"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "free loop space"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "flag manifold"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "spectral sequence"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "homotopy theory"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Gröbner basis"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "13P10,14M15,55P35,55T10"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a14",
+                    "streams": [],
+                    "title_tex": "The cohomology of free loop spaces of rank $2$ flag manifolds",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "We prove that the classifying space of a simplicial group is modeled by its homotopy coherent nerve. We will also show that the claim remains valid for simplicial groupoids.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Kensuke Arakawa"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a16",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805489545953282",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "classifying space"
+                      },
+                      {
+                        "lang": "en",
+                        "value": " homotopy coherent nerve"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "18D50,55R35"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a15",
+                    "streams": [],
+                    "title_tex": "Classifying space via homotopy coherent nerve",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "Let $G_{n,k}$ denote the real Grassmann manifold of $k$-dimensional vector subspaces of $\\mathbb{R}^n$. We compute the complex $K$-ring of $G_{n,k}\\:$, up to a small indeterminacy, for all values of $n,k$ where $2 \\leqslant k \\leqslant n - 2$. When $n \\equiv 0 (\\operatorname{mod} 4), k \\equiv 1 (\\operatorname{mod} 2)$, we use the Hodgkin spectral sequence to determine the $K$-ring completely.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Sudeep Podder"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Parameswaran Sankaran"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a17",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805492649738241",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "real Grassmann manifold"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "$K$-theory"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Hodgkin spectral sequence"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "19L99,55N15"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a16",
+                    "streams": [],
+                    "title_tex": "$K$-theory of real Grassmann manifolds",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "There were a number of sign errors in our paper “From loop groups to 2-groups” $\\href{https://dx.doi.org/10.4310/HHA.2007.v9.n2.a4 }{[\\textit{Homology Homotopy Appl.}\\;\\textbf{9}\\;\\textrm{(2007), 101–135}]}$. Here we explain how to correct those errors.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "John C. Baez"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Alissa S. Crans"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Urs Schreiber"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Danny Stevenson"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.e18",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1806595886291513346",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "$L_\\infty$-algebra"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "loop group"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "$2$-group"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "18Gxx,22E67,53C08"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a17",
+                    "streams": [],
+                    "title_tex": "Erratum to “From loop groups to 2-groups”",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  }
+                ],
+                "number": "2",
+                "pid": "HHA_2023_25_2",
+                "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134486872403970",
+                "volume": "25",
+                "year": "2023"
+              },
+              "urls": {}
+            },
+            "metadata": {
+              "collection_url": "https://link.intlpress.com/api/bgcloud-front/periodical/detail?id=1804415065855684610"
+            },
+            "output": {
+              "abstracts": [],
+              "bibitems": [],
+              "contributors": [],
+              "date_published_iso_8601_date_str": null,
+              "doi": null,
+              "ext_links": [],
+              "ids": [],
+              "kwds": [],
+              "lang": "und",
+              "pid": "HHA_2023_25_2_a1",
+              "streams": [],
+              "title_tex": "",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            }
+          },
+          "HHA_2023_25_2_a13": {
+            "input": {
+              "article": {
+                "abstracts": [],
+                "bibitems": [],
+                "contributors": [],
+                "date_published_iso_8601_date_str": null,
+                "doi": null,
+                "ext_links": [],
+                "ids": [],
+                "kwds": [],
+                "lang": "und",
+                "pid": "HHA_2023_25_2_a13",
+                "streams": [],
+                "title_tex": "",
+                "trans_title_html": "",
+                "trans_title_tex": "",
+                "translations": [],
+                "url": null
+              },
+              "issue": {
+                "articles": [
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "We give a new, elegant description of the Tate duality pairing as a Brauer–Manin pairing for associated embedding problems and prove a new theorem on the cup product.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Ambrus Pál"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Tomer M. Schlank"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a1",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805437884710914",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "cup product"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "embedding problem"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Brauer–Manin pairing"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "11R34,55N10"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a0",
+                    "streams": [],
+                    "title_tex": "Two theorems on cohomological pairings",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "The self-closeness number of a connected CW complex is the least integer $n$ such that any of its self-maps inducing an isomorphism in $\\pi_\\ast$ for $\\ast \\leqslant n$ is a homotopy equivalence. We prove that under a mild condition, the self-closeness number of a non-simply-connected finite complex coincides with that of its universal cover whenever the universal cover is a finite $\\mathrm{H}_0$-space or a finite co-$\\mathrm{H}_0$-space. We give several interesting examples to which the result applies.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Yichen Tong"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a2",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805441001078786",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "self-closeness number"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "group of self-equivalences"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "$\\mathrm{H}_0$-space"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "co-$\\mathrm{H}_0$-space"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "$p$-universal space"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "55P10,55S37"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a1",
+                    "streams": [],
+                    "title_tex": "Self-closeness numbers of non-simply-connected spaces",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "For a finite group $G$, we define the $G$-cobordism category in dimension two. We show there is a one-to-one correspondence between the connected components of its classifying space and the abelianization of $G$. Also, we find an isomorphism of its fundamental group onto the direct sum $\\mathbb{Z} \\oplus \\Omega^{SO}_{2} (BG)$, where $\\Omega^{SO}_{2} (BG)$ is the free oriented $G$-bordism group in dimension two, and we study the classifying space of some important subcategories. We obtain the classifying space has the homotopy type of the product $G/[G,G] \\times S^1 \\times X^G$, where $\\pi_1 (X^G) = \\Omega^{SO}_{2} (BG)$. Finally, we present some results about the classification of $G$-topological quantum field theories in dimension two.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Carlos Segovia"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a3",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805444125835265",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "cobordism category"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "classifying space"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "$G$-cobordism"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "55P91,57R85"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a2",
+                    "streams": [],
+                    "title_tex": "The classifying space of the 1+1 dimensional $G$-cobordism category",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "$\\def\\Emb{\\overline{Emb}}$We show that for the spaces of spherical embeddings modulo immersions $\\Emb (S^n, S^{n+q})$ and long embeddings modulo immersions $\\Emb_\\partial (D^n, D^{n+q})$, the set of connected components is isomorphic to $\\pi_{n+1} (SG, SG_q)$ for $q \\geqslant 3$. As a consequence, we show that all the terms of the long exact sequence of the triad $(SG; SO, SG_q)$ have a geometric meaning relating to spherical embeddings and immersions.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Neeti Gauniyal"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a4",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805447560970242",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "embeddings modulo immersions"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "spherical embedding"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "framed disked embedding"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "57R40,57R42,58D10"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a3",
+                    "streams": [],
+                    "title_tex": "Haefliger’s approach for spherical knots modulo immersions",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "$\\def\\F{\\mathbb{F}} \\def\\O{\\mathbb{O}} \\def\\R{\\mathbb{R}} \\def\\C{\\mathbb{C}} \\def\\H{\\mathbb{H}}$We analyse the homotopy solvability of the classical Lie groups $O(n)$, $U(n)$, $Sp(n)$ and derive its heredity by closed subgroups. In particular, the homotopy solvability of compact Lie groups is shown.\nThen, we study the homotopy solvability of the loop spaces $\\Omega (G_{n,m} (\\F))$, $\\Omega (V_{n,m} (\\F))$ and $\\Omega (F_{n; n_1,\\dotsc,n_k}(\\F))$ for Grassmann $G_{n,m} (\\F)$, Stiefel $V_{n,m} (\\F)$ and generalised flag $F_{n; n_1,\\dotsc,n_k}(\\F)$ manifolds for $\\F = \\R, \\C$, the field of reals or complex numbers and $\\H$, the skew $\\R$-algebra of quaternions. Furthermore, the homotopy solvability of the loop space $\\Omega (\\O P^2)$ for the Cayley plane $\\O P^2$ is established as well.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Marek Golasiński"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a5",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805451327455234",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "Cayley plane"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Grassmann (generalised flag and Stiefel) manifold"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "$H$-space"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "localization"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "$n$-fold commutator map"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "nilpotent space"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "nilpotency (solvability) class"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "loop space"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Postnikov system"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Samelson product"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "smash product"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "suspension space"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "wedge sum"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Whitehead product"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "55P15,14M17,22C05,55P45,55R35"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a4",
+                    "streams": [],
+                    "title_tex": "The homotopy solvability of compact Lie groups and homogenous topological spaces",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "In this paper we show that the functor sending a stratified topological space $S$ to the $\\infty$-category of constructible (hyper)sheaves on $S$ with coefficients in a large class of presentable $\\infty$-categories is homotopy-invariant. To do this, we first establish a number of results for locally constant (hyper)sheaves. For example, if $X$ is a locally weakly contractible topological space and $\\mathcal{E}$ is a presentable $\\infty$-category, then we give a concrete formula for the constant hypersheaf functor $\\mathcal{E} \\to \\mathrm{Sh}^\\mathrm{hyp} (X; \\mathcal{E})$, implying that the constant hypersheaf functor is a right adjoint, and is fully faithful if $X$ is also weakly contractible. It also lets us prove a general monodromy equivalence and categorical Künneth formula for locally constant hypersheaves.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Peter J. Haine"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Mauro Porta"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Jean-Baptiste Teyssier"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a6",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805454578040834",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "locally constant sheaf"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "constructible sheaf"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "hypersheaf"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "homotopy-invariance"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "32S60,55N05,55N30,55P55"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a5",
+                    "streams": [],
+                    "title_tex": "The homotopy-invariance of constructible sheaves",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "We consider the space $\\Lambda M := H^1 (S^1, M)$ of loops of Sobolev class $H^1$ of a compact smooth manifold $M$, the so-called free loop space of $M$. We take quotients $\\Lambda M / G$ where $G$ is a finite subgroup of $O(2)$ acting by linear reparametrization of $S^1$. We use the existence of transfer maps $\\operatorname{tr} : H_\\ast (\\Lambda M / G) \\to H_\\ast (\\Lambda M)$ to define a homology product on $\\Lambda M / G$ via the Chas–Sullivan loop product. We call this product $P_G$ the transfer product. The involution $\\vartheta : \\Lambda M \\to \\Lambda M$ which reverses orientation, $\\vartheta ( \\gamma (t) := \\gamma (1-t)$, is of particular interest to us. We compute $H_\\ast (\\Lambda S^n / \\vartheta ; \\mathbb{Q}), n \\gt 2$, and the product\\[P_\\vartheta : H_i (\\Lambda S^n / \\vartheta ; \\mathbb{Q}) \\times H_j (\\Lambda S^n / \\vartheta ; \\mathbb{Q)} \\to H_{i+j-n} (\\Lambda Sn/\\vartheta ; \\mathbb{Q})\\]associated to orientation reversal. Rationally P\\vartheta can be realized “geometrically” using the concatenation of equivalence classes of loops. There is a qualitative difference between the homology of $\\Lambda S^n / \\vartheta$ and the homology of $\\Lambda S^n / G$ when $G \\subset S^1 \\subset O(2)$ does not “contain” the orientation reversal. This might be interesting with respect to possible differences in the number of closed geodesics between non-reversible and reversible Finsler metrics on $S^n$, the latter might always be infinite.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Philippe Kupper"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a7",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805458218696705",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "loop space homology"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "transfer for a finite group action"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "homotopy"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "55P50,55R12,58E05"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a6",
+                    "streams": [],
+                    "title_tex": "Homology transfer products on free loop spaces: orientation reversal on spheres",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "Let $e_n$ be the connective cover of the Morava $E$-theory spectrum $E_n$ of height $n$. In this paper we compute its homology $H_\\ast (e_n; \\mathbb{F}_p)$ for any prime $p$ and $n \\leqslant 4$ up to possible multiplicative extensions. In order to accomplish this we show that the Künneth spectral sequence based on an $\\mathbb{E}_3$-algebra $R$ is multiplicative when the $R$-modules in question are commutative Salgebras. We then apply this result by working over $BP$ which is known to be an $\\mathbb{E}_4$-algebra.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Lukas Kattän"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Sean Tilson"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a8",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805461607694338",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "highly structured ring spectra"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Künneth spectral sequence"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Morava $E$-theory"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "55P43,55T15,55N20"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a7",
+                    "streams": [],
+                    "title_tex": "The homology of connective Morava $E$-theory with coefficients in $\\mathbb{F}_p$",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "We generalize Bousfield–Friedlander’s Theorem and Hirschhorn’s Localization Theorem to settings where the hypotheses are not satisfied at the expense of obtaining semi-model categories instead of model categories. We use such results to answer, in the world of semi-model categories, an open problem posed by May–Ponto about the existence of Bousfield localizations for Hurewicz and mixed type model structures (on spaces and chain complexes). We also provide new applications that were not available before, e.g. stabilization of non-cofibrantly generated model structures or applications to mathematical physics.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Victor Carmona"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a9",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805465424510977",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "Bousfield localization"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "idempotent functor"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "model category"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Hurewicz and mixed model structures"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "stable model category"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "homological algebra"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "18G30,18G55,55U35"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a8",
+                    "streams": [],
+                    "title_tex": "When Bousfield localizations and homotopy idempotent functors meet again",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "This paper establishes several results for coalgebraic structure in $\\infty$-categories, specifically with connections to the spectral noncommutative geometry of cobordism theories. We prove that the categories of comodules and modules over a bialgebra always admit suitably structured monoidal structures in which the tensor product is taken in the ambient category (as opposed to a relative (co)tensor product over the underlying algebra or coalgebra of the bialgebra). We give two examples of higher coalgebraic structure: first, following Hess we show that for a map of $\\mathbb{E}_n$-ring spectra $\\varphi : A \\to B$, the associated $\\infty$-category of descent data is equivalent to the $\\infty$-category of comodules over $B \\otimes_A B$, the so-called descent coring; secondly, we show that Thom spectra are canonically equipped with a highly structured comodule structure which is equivalent to the $\\infty$-categorical Thom diagonal of Ando, Blumberg, Gepner, Hopkins and Rezk (which we describe explicitly) and that this highly structured diagonal decomposes the Thom isomorphism for an oriented Thom spectrum in the expected way indicating that Thom spectra are good examples of spectral noncommutative torsors.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Jonathan Beardsley"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a10",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805469077749761",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "Thom spectrum"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "infinity category"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "coalgebra"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "bialgebra"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "16T10,18F20,55N22,55P43"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a9",
+                    "streams": [],
+                    "title_tex": "On bialgebras, comodules, descent data and Thom spectra in $\\infty$-categories",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "Persistence modules have a natural home in the setting of stratified spaces and constructible cosheaves. In this article, we first give explicit constructible cosheaves for common data-motivated persistence modules, namely, for modules that arise from zig‑zag filtrations (including monotone filtrations), and for augmented persistence modules (which encode the data of instantaneous events). We then identify an equivalence of categories between a particular notion of zig‑zag modules and the combinatorial entrance path category on stratified $\\mathbb{R}$. Finally, we compute the algebraic $K$-theory of generalized zig‑zag modules and describe connections to both Euler curves and $K_0$ of the monoid of persistence diagrams as described by Bubenik and Elchesen.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Ryan Grady"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Anna Schenfisch"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a11",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805472462553090",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "persistence module"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "zig-zag persistence"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "cosheaf"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "algebraic $K$-theory"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "18F25,19M05,32S60"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a10",
+                    "streams": [],
+                    "title_tex": "Zig-zag modules: cosheaves and $k$-theory",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "We show a Gottlieb element in the rational homotopy of a simply connected space $X$ implies a structural result for the Sullivan minimal model, with different results depending on parity. In the even-degree case, we prove a rational Gottlieb element is a terminal homotopy element. This fact allows us to complete an argument of Dupont to prove an even-degree Gottlieb element gives a free factor in the rational cohomology of a formal space of finite type. We apply the odd-degree result to affirm a special case of the $2N$-conjecture on Gottlieb elements of a finite complex. We combine our results to make a contribution to the realization problem for the classifying space $\\operatorname{\\mathit{B}aut}_1 (X)$. We prove a simply connected space $X$ satisfying $\\operatorname{\\mathit{B}aut}_1 (X_\\mathbb{Q}) \\simeq S^{2n}_\\mathbb{Q}$ must have infinite-dimensional rational homotopy and vanishing rational Gottlieb elements above degree $2n-1$ for $n=1,2,3$.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Gregory Lupton"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Samuel Bruce Smith"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a12",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805476673634306",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "Gottlieb element"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Sullivan minimal model"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "classifying space for a fibration"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "derivation"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "55P62,55R35,55R15"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a11",
+                    "streams": [],
+                    "title_tex": "The structuring effect of a Gottlieb element on the Sullivan model of a space",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "We introduce lifespan functors, which are endofunctors on the category of persistence modules that filter out intervals from barcodes according to their boundedness properties. They can be used to classify injective and projective objects in the category of barcodes and the category of pointwise finite-dimensional persistence modules. They also naturally appear in duality results for absolute and relative versions of persistent (co)homology, generalizing previous results in terms of barcodes. Due to their functoriality, we can apply these results to morphisms in persistent homology that are induced by morphisms between filtrations. This lays the groundwork for the efficient computation of barcodes for images, kernels, and co-kernels of such morphisms.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Ulrich Bauer"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Maximilian Schmahl"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a13",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805480104574977",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "barcode"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "persistent homology"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "duality"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "injectivity"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "projectivity"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "16G20,18G05,55U10,57N15"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a12",
+                    "streams": [],
+                    "title_tex": "Lifespan functors and natural dualities in persistent homology",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "We prove that the Díaz–Park sharpness conjecture holds for saturated fusion systems defined on a Sylow $p$-subgroup of the group $\\mathrm{G}_2 (p)$, for $p \\geqslant 5$.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Valentina Grazian"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Ettore Marmo"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a14",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805483300634626",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "sharpness"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "homology decomposition"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "classifying space"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "fusion system"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Mackey functor"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "20D20,20J06,55R35,55R40"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a13",
+                    "streams": [],
+                    "title_tex": "Sharpness of saturated fusion systems on a Sylow $p$-subgroup of $\\mathrm{G}_2 (p)$",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "By applying Gröbner basis theory to spectral sequences algebras, we develop a new computational methodology applicable to any Leray–Serre spectral sequence for which the cohomology of the base space is the quotient of a finitely generated polynomial algebra. We demonstrate the procedure by deducing the cohomology of the free loop space of flag manifolds, presenting a significant extension over previous knowledge of the topology of free loop spaces. A complete flag manifold is the quotient of a Lie group by its maximal torus. The rank of a flag manifold is the dimension of the maximal torus of the Lie group. The rank $2$ complete flag manifolds are $SU(3)/T^2$, $Sp(2)/T^2$, $\\mathit{Spin}(4)/T^2$, $\\mathit{Spin}(5)/T^2$ and $G_2/T^2$. In this paper we calculate the cohomology of the free loop space of the rank $2$ complete flag manifolds.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Matthew Burfitt"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Jelena Grbić"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a15",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805486165344258",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "cohomology"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "free loop space"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "flag manifold"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "spectral sequence"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "homotopy theory"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Gröbner basis"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "13P10,14M15,55P35,55T10"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a14",
+                    "streams": [],
+                    "title_tex": "The cohomology of free loop spaces of rank $2$ flag manifolds",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "We prove that the classifying space of a simplicial group is modeled by its homotopy coherent nerve. We will also show that the claim remains valid for simplicial groupoids.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Kensuke Arakawa"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a16",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805489545953282",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "classifying space"
+                      },
+                      {
+                        "lang": "en",
+                        "value": " homotopy coherent nerve"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "18D50,55R35"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a15",
+                    "streams": [],
+                    "title_tex": "Classifying space via homotopy coherent nerve",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "Let $G_{n,k}$ denote the real Grassmann manifold of $k$-dimensional vector subspaces of $\\mathbb{R}^n$. We compute the complex $K$-ring of $G_{n,k}\\:$, up to a small indeterminacy, for all values of $n,k$ where $2 \\leqslant k \\leqslant n - 2$. When $n \\equiv 0 (\\operatorname{mod} 4), k \\equiv 1 (\\operatorname{mod} 2)$, we use the Hodgkin spectral sequence to determine the $K$-ring completely.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "Sudeep Podder"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Parameswaran Sankaran"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.a17",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1805805492649738241",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "real Grassmann manifold"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "$K$-theory"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "Hodgkin spectral sequence"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "19L99,55N15"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a16",
+                    "streams": [],
+                    "title_tex": "$K$-theory of real Grassmann manifolds",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  },
+                  {
+                    "abstracts": [
+                      {
+                        "lang": "en",
+                        "tag": "abstract",
+                        "value_tex": "There were a number of sign errors in our paper “From loop groups to 2-groups” $\\href{https://dx.doi.org/10.4310/HHA.2007.v9.n2.a4 }{[\\textit{Homology Homotopy Appl.}\\;\\textbf{9}\\;\\textrm{(2007), 101–135}]}$. Here we explain how to correct those errors.\n"
+                      }
+                    ],
+                    "bibitems": [],
+                    "contributors": [
+                      {
+                        "role": "author",
+                        "string_name": "John C. Baez"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Alissa S. Crans"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Urs Schreiber"
+                      },
+                      {
+                        "role": "author",
+                        "string_name": "Danny Stevenson"
+                      }
+                    ],
+                    "date_published_iso_8601_date_str": null,
+                    "doi": "10.4310/HHA.2023.v25.n2.e18",
+                    "ext_links": [
+                      {
+                        "location": "https://link.intlpress.com/JDetail/1806595886291513346",
+                        "rel": "source"
+                      }
+                    ],
+                    "ids": [],
+                    "kwds": [
+                      {
+                        "lang": "en",
+                        "value": "$L_\\infty$-algebra"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "loop group"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "$2$-group"
+                      },
+                      {
+                        "lang": "en",
+                        "value": "18Gxx,22E67,53C08"
+                      }
+                    ],
+                    "lang": "en",
+                    "pid": "HHA_2023_25_2_a17",
+                    "streams": [],
+                    "title_tex": "Erratum to “From loop groups to 2-groups”",
+                    "trans_title_html": "",
+                    "trans_title_tex": "",
+                    "translations": [],
+                    "url": null
+                  }
+                ],
+                "number": "2",
+                "pid": "HHA_2023_25_2",
+                "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134486872403970",
+                "volume": "25",
+                "year": "2023"
+              },
+              "urls": {}
+            },
+            "metadata": {
+              "collection_url": "https://link.intlpress.com/api/bgcloud-front/periodical/detail?id=1804415065855684610"
+            },
+            "output": {
+              "abstracts": [],
+              "bibitems": [],
+              "contributors": [],
+              "date_published_iso_8601_date_str": null,
+              "doi": null,
+              "ext_links": [],
+              "ids": [],
+              "kwds": [],
+              "lang": "und",
+              "pid": "HHA_2023_25_2_a13",
+              "streams": [],
+              "title_tex": "",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            }
+          }
+        }
+      }
+    }
+  },
+  "parse_collection_content": {
+    "IPB": {
+      "HHA": {
+        "input": {
+          "https://link.intlpress.com/api/bgcloud-front/periodical/detail?id=1804415065855684610": "eJztXVtv40h2/isFo5HMALrwTtGYTFp2293ubrsdyzO9k/RmUCJLEtskS8OL3fJgGrtPQf5AgAAJMPuYh7wkb0GetvNL9pfkO0VSN8tqy+NdjwFjLpbIupw65zvXKlI/bvkyEFvbhqY1trLC90WWbW3naSEaWwHP+db2j1thsLW9pXc0y9JtzbE7tu10LEfXthrofC7S49DPixSDbLX5OGz3h34ki6A5SGWSt1ORySL1RTvLeR76gzASbVfzAt11bcMQgSNMu8+Fb5i+8G3LtPp60Ho/HmLwhMc06AsZy0gOJw1Gn3I5njCeBKw7HkehjzFlklWNd0dhIjLqU13o9vspjfCiO3ehlwerR6URW2gYZllynIZJTsu2TaOpaa5ZXX+TRJhjdqOjqxv1Zb2xNS76UZiNDrH4Edo5Dd1Ak0GYZvlxees7wUGV7nmeGrMQ2bFIy4tGY0sEYS5TCOEfftwaprIYH5Vs2JdFEoTJkO1VDRab1kKyDc12IR+vY+u252rTZqeTsdhVst7af/PN0bODo+fNvWcHp29Oegttrp9uUERRdfd5kSQ8Zbs8jbJMJriZh3lUcV7EPIzKjxeif8yH4pu0+s6DAIDIXoNZ+pUrxpUr5pUrVnnFD/PJqbxIym9jmeXV0mj6D2OR5mGNg0ymEKRhAt+KnT31vakT75+F2TjikzfJqRxvbWs/Na7w0bF03UBn58/DxxfnKXqwg4RnGU/D4FI8AFZaN2Hlb6s217GKeD0P75I9zTBpQovFYC26bcvz7E6nNEFXpFLO0Dw4au6+ONjbXyWUq5PNyeRliz3jSSgitjtKwywXSSbmEf5NEsLoZWAbkwP2VqBFmrA3SQ4BygZ0IuEBn5Pd+8B/WlzIls+XpTjK8/F2u40GrZjno1bZqn2fwtU/L1t9WbbLDL8i2g/CL3IwrdKB9bK1HcfxXMu1Vsr2N3u735wefLtX4WilcK9ONyfdZzLhUQAJn4fZnFBfi1E4HLGZbBvsm1av1W3NCTKIA/1ppBq2RFBcI82Li4vWrFH7I/W6V5EatxHpMp+XZXoIlA9nZm29SF3N1jXPXm1ED7tH3eczy7BKolcnmxPoIU/P2NsWeylHyaIrOhZJkk2icygzZz2EH2K9fOOL9+bTcVZcJ9wM0kVXkbWqRm3qQREOfLc/ulch38C9XRHyMudXm+T1gYbtunCRhnONul7vF1e6w2MBW8p2ir5IwrNrTe5+JOEq+QoJjql/q1/2f1oMonWiHAs5jkTLj3jWqpq21QBV/3uV54187JVwxfZ0q2NY0Le7kMYRzz/9HEF3djl8XBRBC1fJhOesW+Sf/iuRMWeBYDtQBhHBzDZYb8zDZE4+CTIKDPgU3q5V8D6cXX6NFZ1r0f5YdbtPedi3koejIUswHdd070IeuxEvwN/dsB9G2bXaQYnHGNIKRdpg+ylPfDEnAV+N0fLVGE+LeNa4NUiv05Qw5sPWUtv2x3KMe9US53ZSMWCwDM3w1oSPN5fK85SPeMz2wJhrhLIro0gMBQnnOY8uOHzPQSqgTsGcYIZqmBbxN3uaFOFQtWyF4hoFQeMwymXSKvwhWt2rGNzbicE0LcNGZHAnxuqliETC2fO0H/7fP12rHD1Z5ODcGIxrUDCQi4C9QmQRyHg+Ym8NMYz/NJPEYO63irM1wR4YklFQ2Zpr3n4/1Av9fuO+zu2kYlHWq1uWfidSaR23dluQihBJJMT1VustTy9C/2ydUBDfQS7VQE8vyg5rpTOSsRjjYtZaaE2lqMGgTQFja56ye5OUdztJOR3DxL9m504kJUc8SUTGXhSin/mjGN+uldbrEBat9i7si90iTUWSRxOWyJxx3xfjnML1rOjHYZZRhe7LRUmqqVqj2VRPywQYszQjGly/xh2VocFyy/bHeqh7Tp5vJ8iOobmeZa4u1m0qyKp2cZDxs8W6xVs+ScRN8qCw7AoVQ4c1ma6KnKeN2kE4nfL+JHCD+sUqCXiOaWmauzpD3TgiEDKFu3/JExEtlfQW1WiXjwWj9TVKx8S6gzT052tHQzVU63091NPCz8mIXV5XSyKHFJN+1O3a41QOmuU4zfdzJN2fjG5QkFghI1fzXEfvWKZ5FzIi05WxV6JI5sVzwoO+LII59WBH4fsYwRtEdDoS7EjkI5FS6JbNSemMhiktWFq0kmidbKaN2h9Vt7ZI2mESiA+tUR5H9yqX25XIXSQ4mqlZzt2EcXDK7KTFXkUivJXxOqOOpSw+Z7+m8pjZsI+q+/06kdul/sgxLcsyLO9OUs2j0B9JmHf2EqIoRtdHAt+G6TBMwlXFmOT9mfXh6XnV4CZymG/b3ud+EeWTNk1/vwK5Xe7vup7ZcY3O3QhkD9nehJ2EYhTNyULVPNkLOT4L8XetXoiU+paK8X50bY1zXhxVs/bHsu/9CuF22QxkgITGM+7GabxEmof0MWGHLXYiEer0RTq8VjUOeTohT7FCGO/jtAp44+AmkqiatT+i4/2K4XapSkdzrY6nG3fjI3ZSKc/gDEbhOBKTa/l/EEVhIsOM8ZztjhBXDeUKUWTlKP2nReivEcUslSwFUjZuf+xX/e95h+d2UjF009RMw7uTBPKZOGfHLdYLk9HKMrGSyZtUDFXp5cre2jh7Wkh1d40USgnMtWujXxU+jUfje5XB7TKPjmnbnob0404M1O6IpxFy+G6LvRVhX8z7ipMiH0IQC17iSFywnbRIsqr2siyVCzVIHdmq/jcxV3NN2x8vakLuTzQ3SjhWbmr3tuh6NhZ+yKMDOqtT8337H35L0+UpP0gGko5J8TDu+XJMnb8af/0VyBRf3+Ds0ldt1fKPP5OlYqkYiFSIgL2XRZrwiF3Aco1YdagIoqWN5eYPBY9Io8acio8sTBjSEoYsRaTowlPBSdlG9ZS4KdNyZh4NRT/loc9wpyINYd6FiCL6y+cIoyFo2DAQdAedIQiEZNV8RC4maiEvwsdYUD610L2iqp9KHogsZ5BUFvYjwTI6UdFgYUu0FnvkkknKr7CuNFfzE5wAxjz0M5YVYAQoSYoYfnf1opDnxiJPFxeFYYlSDFjkGVazNHBjOrIv43FBO5CZH4rEB43j0SRTTWgadYItoy6tmTgrMogbUSax6FzAHAU0aV+or+k4FVTSVIyIQFqY+FGhzgTNCH/VLAdqsBj4ixhYAhuHuAtzL8sR5J9z3MrVXZH7pO2KZyFCZliACQP1wA8UFJMl8pyr4xAVWipESdCmBITsB9Re8DRgCezBKghkRf+98PPWV+3x11Ar9ExlUPjUplS0FLxMz6b6qXqfiDHU7RDiAMcqpeBsBIT/zbvp1pIPekPQJ1pgPtUqaNisXaG/WY/VTNVgWfvdFst5OhQ5xvi+j/DqDFdSEeFrIgcyiuQFSyS0EKrwbuvrl5UW7VbjsJKobJvt1hOzLhpMSKpftfnXtMJ3CUjdpZONxEA6mLfNDM0wqntBeF42OZX53NAY07Kcaf965oN4zP2cIZuB2dhmWsvWtGkju0mjX23jzLU5iGMYf+5P2AH5Obptzt3eC6H2g2lPTdN1t7rZJkrJCo5BHWwWIpXKLJb27Ehi1YJEs/UTCRWjA5Rqk792GrtHrw5aiaBdWgRTZwvmHmBpEZMyGAE/OQupXemL2+oowXSMsjrMdiXpBvH+WGkVjxqIy0RMn9hfsT3gd8R6peatFtAqKuL3UWsRRAuTH0LPMeaRyLdZNxZUXkP4PlV+zNyTmDKfrBqbHBqPs5ZMh6rqDLNAa1yYoCJ4hjAlJbb3YczJDvyCdfjDsNkPk/b7NImyvP0+qsxvCzf+9nj3b54t0SHHBdi2F2XiPBTplTmyakGZaniVU38P2cB77EQ8z9lh9/TFNqsu9enSyvEu+8rfE3+Uo0xp6otlEP3ZZXAXpM/2KsiXV66UXHsa88rOkQHLYPmSIf5CvIwK4BksT6hO/44EJ6MOq9OjsXI2gQkojS7DMPAuCXmftIRJLrf/+PNXbRrna/WhGviKhRSDVpyNFaGKRujY+PvRiK+1hFMD+LlRFmze+lUd9nYZBUdZa0r4d7TCGedYNpJFFFQOThA14pwnOdpfWdY1co0zn/4zNF1TBdGbrfJwLkzolb6K9A5EDSpXxr4A+V/Sav/4s68WccNV1xLvFvkI/hhO+1TECBxz0T5IcK/0gtn2VIJT5iyumY5RJHk0pmBWKR+dJGsjrmuXoT1X46sEp/Z+bcinTddDwJC4cTNmdM8RvHMKtBBKidaShG+CX1hqxGh5M5fN6sj6DKvTdX4Dr1Lt9aldQIQKfA7tKmIted9QMUS5wC+yL1lcIBrMwmFSRlWlsvB5kNzwOYKBGzj6IOhzzeeBqdtU8Bn4mqtZpsk9zW6Ng8HNeObPVlyF2ozTXnNMjguh3AHFcYlaDczVsRLirRg7nqQI4PMV/CwBxkYUsIJdclyZCRCbc8TSft1XhfaIN6mxqAxMa0NCelOdpSXPSTEPY4oZGR32GSG6VLFHsoJce8MZj2tkQE0JBFhEmIQ5wpA5A9K6Os+qUdFhTkFF/PWJ+KEIUxF81caXGbHdQCIGP362zwgum/JomeJiEfB3TOtrfip+06i0pEmZCEhGpjhdAnBRJofV3J+b61i1xkRLczADeU2RkSVToT3FgoMQU9V3KxpUg8rU1YE/7yOF6s15SvKJs+8qIwSCk4BIV3OsMv238mhXY3vKxPdxjfSwxUr1QSKKbCaD34EH4MmkTmCqA6wMEoQVmSeq1Wqrqb8uE3vC445ELkSjzqdqNMrSOeQyKaYby0fOr0INsbaY9xE7AsASc9CvRZ/VThQZqxp8mYN/OUfyp9/924sX3YqzbC4W+tPv/r30pDQL+yKGeSITRTmuSlIhhIpRFd+/hAvgZ3QhAR8qoWBh0IBIJEPE/VgN5YlVRQTX//gzaRultFTQgkUiUkoKajSWYkaP7lQpS0R2kfdXyS4Bsq6plFn8ksuaTrLsteo5kdHQFUFmmZcZs3pUAH4oCQCUaZJcV2xGHDjoCwEjKvIZErplX2VgaeIpGTPJl45x5g9VYahyxuQJKmes2FCVjVrsi54QLJAXSSQBGAp0GdT0XLS+XNAJfyRlJub8CXoIlRMSNTPnggYgM0zZhUzPGnXmr2ooY6TnY2gIJFhktRRVu1ruFQta7DgSPBP1WlQgTA4fCFmxHHRWBUdcmwc7XUKUXDLHz8dNoPjpAvQ3NBhrRiq1HYQM+Aci7Qvk0V8yR3ebjmE2TV3TG+Rv0aAitAxpytokWRX6SmKZk3ftLLDoGmIlP+jKNWBTCIDBB2FjQDeoi2hT21xqwJzVrhqgc6lPV+PUSp2+yFbj5MvGXBiWl5WrasRKfdlFCA29GMl4LpBTgYpCeSA4Rhu2WE9gnL5EW+VYVLhWUU7+tzSXpHBLPq520IopMx835eQzAmyk1jo1QUy5IiLyT7/716yss5HyiakVB1jpYVZGyWafxi4weympuzKpdPdGJvUqFivbuo8VV85kc6M649DzAomligAUD2nkyuj9Wddfz3G79Z+UvdmM+FuygKpXSBUyEagKfVWbr5VPhXHloyvgjWoBL9FsKgfyw5Hc2k6KKJrtk3TZk/Pv9SfNvqrfMHp6CFYScxKJir2KEhkwgx1K5cShjEgE6bBqySmM8kqcQzN3EQvRBnEANXwzWHBThmZYTc1oah1VyrgRaW9KXY/kEPMj3Ah98kIq06tLxGoLI5un5BnsfgHyj6lAu5YUfQNSunWFmmrHZRgaDiaqgk6lzBe8yAKZDgZgDvcr1R9QwC+qK/MkHosgleylzD79B1gmgVjZoGCrEBHrRlS8BKfTT/+dVEdOw8yX7ETGAr1OivCSUcX8WKY5j9at0Gxq3s1XeAh/R2JXa6v4Wu4cJCHwDL+vzGKf9IrTRkSqXGK1yHwyFvNL7EbiAwEqZa8Khcc1dJIwbk7nPumQL6OQPC3xPxK1R3ny7h3MUz550pxtJ8wTVW8Xvm2xE3G5Fh1WU9+Aph/fvTtnuz8Jf1RR9EEo3o3AldQvYI6GKR+PFoh5IRJw8UWB0Kob8Bi5Z4/HiEN6o+Is4g3WTWhDg/aXh6O7o/Q10BZFExbQjtql0iWodqG8lRLtPIm9NDzjyIvZTosdTBC48rQB2CZsv3wSXj19uI4wcwMFSxBbNP+uoCPOlPyPqp1EpUlnzTChLSAQo/iahTFt2pDbWy1petwVyWS/fFZlB+bZb7DpIa9DpBry4jOYNDawDq8VGNV2lYhLn+SnYVnrHZT2gEIPZc1mBjaHS0LyEy3w/O/DQUGb2Q12ys84GrI3F5we/ntGeSZHWhuy7yQ80+iCwzZ8Zg0b6H9lbI/K3UYw+XhAD4On5LPjWerXm8R9GbHXZRpDTyeGgozDWzIO+6Ux6P1QkHVQFclqwAXhCMx4zt7yiIZ/IQcDOhGv5CPZa7AwuVy3LHsjc3EKIP01bXUWFDLBKJF6ZlO/1ssR0qVwbgifoAwLPo0wLjOEeUN5Tif+XvIQBpiA+uk/Mvbp98lQRNBTmJQJ26dwLAkkO5VpKtZCy97ILHcBhijKmlF4hrT+AzkbtCvUHgwtgvcRSyDkER/owf16E5Met1L5+YnMebO5wz8Qq686y2OYmAlnOyK6oO2pIyATOsZOqL4s1i/CcDYRgmB7MDIpRQgp1iBStbFc4kdhZnelHh8W9OwKZ92zMz6BCD79y+Xw0/8m7NO/JdGn/11PoKndnMBemVgjW5uz3r2ZlXkhVLK4XyR+/QKWGY0iotjnWw5HBx7uwWiiPeJ2SvwaiEOKqAINewbrhllO08kwq56Hu3YBTlNzb76AvShGNoIIBFg/Le2QgsezkMP1xIueB9rGR1A8xCxirQVxNg3XjmWWJ+GZPK89M8LfLKsSHfVdncMIF7zMqOiPZIDE/FDCwhEL4zIWOhEIQf2ztUB0NgvjoCiDAQmbzgekElKu0nooOwZW+WYR8W32JiCbEMaLeOwmYR9wOOQfYPFJ7xCpITZPePOQp4FM6IDCvghoz0/SmzEAdNmkWO4Pn+GzsQFYn6ecIvUn4yfNMfwZWAtvMrPQU8+JlSEiehOLIf/H5N27XjiM8YH95sn8ik7DCNxmO7xQRnodifZG4bKM++BLlZzWxz0YxYLjiv9VGUEEQ6pZ0ZZEvb1Ee4dUhilSVZxXwVN1GmRB8yAG5Ch76knIXa6e0XpZKHOI4Fqgz3MqLa5blruRM6l8ZElnUQbAVN6uYpOyWhGVdpZF/GIBOwcwb+xVGl422HdFcinY6+LuKDupDf6F4GdsGEmC6XPypfDhYGEAJCdl3bW70/TpaMKHvMRMeQBnuqbFOAp2OoN7SBCzNOAW/BHCqj1SAC6LCXEbvD7hMUT2nKf+p//k8DiXHG1fF2HG3kxkAr1aq8BY5wZhYiUBX57B4YLsSnvJy2Mh6XgUZnG1+1xmZq9DscLv7YUyGrBXPCM8kpV+jtgAi0D86a/NCzajtgu+U523XxbLaXM+LOuwy0yvPDZFhbJKsGmnqPL0C7S/5DEdeZwmWDupOkSW5evDcbepb+Cxaz5PfHjABZPii1TVU4vyXCWoDMKBqmGpza1haZyqk15L6Rd5fTmmXTz1PppSW4tMZbln9JQ4P4tCeMzcH52R4Vi3ng5s0s3X8+TFu3e07d7v/7j/0/fGk2Y2QWIj8mpxc7UEBanyrKCK31V6xMuNsaUsnmIq2H2xFjGdzXxowOHBp8FcHZYyMoNKIsw0m1DpeInsWhGcZkb8XcjFXxYwk+w7ngzBcKjD27V2p9M09c0iu295VJTGZxZG1eYbIds/5xxZZn2AsKy+7ogUQQKdy+tdqY68RMQgAIL3F8h11lHqbWQhdxdTyqlHKp1nffCPqCk3COK4UPooIrUrrvZket98YXy5COmw+epCotm+XIsCbzO7MTvgOcXkVN6qQFNGqKBD1lavNOYSBo0HdMBSZpcIPIPy5Ow8zTvIKoHnHqSytrCwGcmVweAB1YjPq+PvqnoX5mjBqAqSVeQths/hkGK9HeQFOSL8g0v4r0Mp0iB8/xmOGhvg9GppiHR7ZsNoq4dOUpd8/aGQ+JhUDjKimkl4OTsi+qT7/WcqTS8oU3wt4Jh4gjQeHh8YaT4XRcLerGO6rm1kLXajEA5iseaE8DUPy3JTo4ytQGlUEl8qX65K2mWPxeAWLoR1J5flgz4N5WOQ254UZyOlrOsJ1zcIYfdm2SrU6iX3ZZ+ittprMOTbbEzJVkGbQtkZhTClh1xKvroU+cE8cxV/oBedB0zoVTDAt4w//XfCnuHPfyYA2bqqAtFvbYR2PsvD6UUnygknQYh8ZUW88en3wac/xOw5FdHWRUMgw9hA6Z5L6FYo+vOui7YoldipTiZjMS3aL9vZExmk4VCyHZnItYYWRG3iEqjqFmd/rUr1Ya03dXFMxWaJbJ41BR3qp0B/AANQHRKsiucyWVEvfRPDaHUjhNo8kE1IOyiobA5v8el/MoS6yeWnP0TrZaxv5DB65VZDzMHYQYr4stxzYVmRljW9auPQWOFyu/TyKKQk5zzyKQtEUhiF47Gg1yXSexNx85DOzWf0AiksATFQDzmiPxKXVDFIyGUq7Ko6Zln6/8zKNsjO1Omu/CJMVL2/3tcg01BZkiWPsXfGk2wENS3gONYiRd8oKKPgYUDbCeRgp3lT+dogepBNvW23LPjWPFd7ENLP+UgEFCGL5FxEcnHv4VCEKT9nrBsDiOrMNZYJgMCiHeMG7eG+KghNJ5KeHE3p9RE9MANBZ0jPal2G7NswGyVrFVVX5ZnfNrbOZVTEYuldcZrrmYbndhxXd/DPVt3sqIi3tg1HvUJ3LNRBDnr/sF6/GHdxFN20rE5Hs5yO5mnq7U2qVTlI9eU1FQCJKnX3SFyILFcD+tXx83J38M/44uKFh7xKkk3NcLBu01ogWV8iWV8gWftLknx1eNCCACCUdPilfrzsyrXq/cozca5odxDUT1x1k6SonqKqkS+TaEK+j7aUq+Mg9a1MUKWEepffB9UbkoG2BQ4TtExNc0zb0gzDWYKWvQm0nI5rWJpZvjX5ptD6i8rpCrRc03McT18m+RFat4OWuQJaluZarqnb5hK0rE2gZduO67m2ZdgPBlqOBlsLbBn6I7TuAFrGCmi5utuxdcfWlqBlbgItyzU013A0vfNgoGV5HQ9hgFW/Vv8RWr8IWvpVaOmaaViGZVneErSMTaBlOoQrw1mS068ZWmano3cc21jShkdo3Q5a2gpombZndzTdMZagpW8CLcOxLNuybfVq3IcBLcMzdNPxHM14hNYvh5burYCWQw9vWZp6Z9I8tLRNoKWDWYZuu9bDibV0D0GA0zE63iO07gBanRXQ8syO6Vm6bi1CS/c2gZbmefQOQs1xHg60NMdFnli+AusRWr8UWu5VaBnwk45pG85S8UHvbAAtF8iyzI5tdPQHAy0kNZZlwik+Fh/uAlrOCmjZOrK7jnYFWu5G0NJtq1P/ZNuDgJYLS625pgvCH6F1B9CyV0ALPEaSqBtLGaK+STXe7RiuBXy6D6dk6nZsl8JMx37MEO8CWiuq8aaudRzN8q5Aa5NqvOua9DNg+nLg8muGluvYUCzTdd1HaN0BtFZU4xHHO07HNvWlary+STUeYjJszXa0pUz+1wwtepWt5enWo9W6E2itqMabJvykZXhXoLVJNd61O7pj6B3n4Wz0uLaHzNjT4BgfoXUH0FpRjYfmakbHsb1laG1SjXdtzdPgVrWlYwS/amiZyDwsW3+E1p1Aa0U13oTFcQ1DW95D1DepxruWYZkQ1UOyWpbl2bDjnaVS3CO0bgUtbUU13gLgzI5WFqXnobVJNd6FV9UMwzOsxdK2uSQn81cELeTG+D8s7YMpxbmm3YGh7ZS/NvGoDb9UG1ZsIFi6o8PYGubSBsIm+weuAW0wPb3zcDbUXcO2XTpIoD8i6y6QtWL/gCIkzXLczlKRd6PtA4KVYbie9nA8uO5YRod+a/LRg98FslZsH9DPrhsd+iGiRWRttHsAiwV06drS7sGv2YFTXdvpIHh5OMqgObquwS84j4dL7kIZVmx42CaiJKN6cGBOGTbZ73A8GzmSrpvO46HYuxDTis0D2/Ecy9Msb8lmbbJ34HgwVzBbnvFgIng6xI8Y03C0xyNAd4GsFXsHtkdHw0zdWcpnN9k6cNQBU80xrIeDrI6r0yGg8pj5I7J+KbJWbB04CDeQgOveUm64yc6B4+qe4xnmcgT/K46zHJccom06D+c4nOO6hucgPtAfD5bchTKs2OxwLNdxkC9Yy+fDN1EGx4Y6uMbykaVHMd1OTCs2DlxSAt00reWjZRuJSdMt3dR093FX+heLSfc8j8hd2VNTPzaorvXCfI6c+avlLxzVkkDfN/QipJO532ZbIlW7SsyIZ2/Uj0nsh2mWd6sX8KumxZie/j4NY/E8hhi3TgvRYLrVfMmTpqEZNtOcbcvcNk32/PB0axlGgOBWnA3R7824/hGkrFA3B0XU2vrp/wGo53Pd"
+        },
+        "metadata": {
+          "collection_url": "https://link.intlpress.com/api/bgcloud-front/periodical/detail?id=1804415065855684610"
+        },
+        "output": [
+          {
+            "articles": [],
+            "number": "2",
+            "pid": "HHA_2024_26_2",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134488046809090",
+            "volume": "26",
+            "year": "2024"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_2024_26_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134488302661634",
+            "volume": "26",
+            "year": "2024"
+          },
+          {
+            "articles": [],
+            "number": "2",
+            "pid": "HHA_2023_25_2",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134486872403970",
+            "volume": "25",
+            "year": "2023"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_2023_25_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134487396691970",
+            "volume": "25",
+            "year": "2023"
+          },
+          {
+            "articles": [],
+            "number": "2",
+            "pid": "HHA_2022_24_2",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134485567975425",
+            "volume": "24",
+            "year": "2022"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_2022_24_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134486088069121",
+            "volume": "24",
+            "year": "2022"
+          },
+          {
+            "articles": [],
+            "number": "2",
+            "pid": "HHA_2021_23_2",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134484720726018",
+            "volume": "23",
+            "year": "2021"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_2021_23_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134484989161473",
+            "volume": "23",
+            "year": "2021"
+          },
+          {
+            "articles": [],
+            "number": "2",
+            "pid": "HHA_2020_22_2",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134483626012673",
+            "volume": "22",
+            "year": "2020"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_2020_22_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134483881865218",
+            "volume": "22",
+            "year": "2020"
+          },
+          {
+            "articles": [],
+            "number": "2",
+            "pid": "HHA_2019_21_2",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134482644545537",
+            "volume": "21",
+            "year": "2019"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_2019_21_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134482921369602",
+            "volume": "21",
+            "year": "2019"
+          },
+          {
+            "articles": [],
+            "number": "2",
+            "pid": "HHA_2018_20_2",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134481709215745",
+            "volume": "20",
+            "year": "2018"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_2018_20_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134481965068289",
+            "volume": "20",
+            "year": "2018"
+          },
+          {
+            "articles": [],
+            "number": "2",
+            "pid": "HHA_2017_19_2",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134480996184066",
+            "volume": "19",
+            "year": "2017"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_2017_19_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134481067487233",
+            "volume": "19",
+            "year": "2017"
+          },
+          {
+            "articles": [],
+            "number": "2",
+            "pid": "HHA_2016_18_2",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134479964385281",
+            "volume": "18",
+            "year": "2016"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_2016_18_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134480224432130",
+            "volume": "18",
+            "year": "2016"
+          },
+          {
+            "articles": [],
+            "number": "2",
+            "pid": "HHA_2015_17_2",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134479154884610",
+            "volume": "17",
+            "year": "2015"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_2015_17_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134479410737154",
+            "volume": "17",
+            "year": "2015"
+          },
+          {
+            "articles": [],
+            "number": "2",
+            "pid": "HHA_2014_16_2",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134478274080770",
+            "volume": "16",
+            "year": "2014"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_2014_16_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134478576070658",
+            "volume": "16",
+            "year": "2014"
+          },
+          {
+            "articles": [],
+            "number": "2",
+            "pid": "HHA_2013_15_2",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134477397471233",
+            "volume": "15",
+            "year": "2013"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_2013_15_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134477653323777",
+            "volume": "15",
+            "year": "2013"
+          },
+          {
+            "articles": [],
+            "number": "2",
+            "pid": "HHA_2012_14_2",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134476525056002",
+            "volume": "14",
+            "year": "2012"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_2012_14_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134476793491458",
+            "volume": "14",
+            "year": "2012"
+          },
+          {
+            "articles": [],
+            "number": "2",
+            "pid": "HHA_2011_13_2",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134475816218625",
+            "volume": "13",
+            "year": "2011"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_2011_13_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134475983990785",
+            "volume": "13",
+            "year": "2011"
+          },
+          {
+            "articles": [],
+            "number": "2",
+            "pid": "HHA_2010_12_2",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134475090604034",
+            "volume": "12",
+            "year": "2010"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_2010_12_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134475354845185",
+            "volume": "12",
+            "year": "2010"
+          },
+          {
+            "articles": [],
+            "number": "2",
+            "pid": "HHA_2009_11_2",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134474243354625",
+            "volume": "11",
+            "year": "2009"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_2009_11_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134474495012866",
+            "volume": "11",
+            "year": "2009"
+          },
+          {
+            "articles": [],
+            "number": "3",
+            "pid": "HHA_2008_10_3",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134473010229249",
+            "volume": "10",
+            "year": "2008"
+          },
+          {
+            "articles": [],
+            "number": "2",
+            "pid": "HHA_2008_10_2",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134473274470401",
+            "volume": "10",
+            "year": "2008"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_2008_10_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134473584848897",
+            "volume": "10",
+            "year": "2008"
+          },
+          {
+            "articles": [],
+            "number": "2",
+            "pid": "HHA_2007_9_2",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134472301391873",
+            "volume": "9",
+            "year": "2007"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_2007_9_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134472557244417",
+            "volume": "9",
+            "year": "2007"
+          },
+          {
+            "articles": [],
+            "number": "2",
+            "pid": "HHA_2006_8_2",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134471391227905",
+            "volume": "8",
+            "year": "2006"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_2006_8_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134471642886146",
+            "volume": "8",
+            "year": "2006"
+          },
+          {
+            "articles": [],
+            "number": "3",
+            "pid": "HHA_2005_7_3",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134470137131010",
+            "volume": "7",
+            "year": "2005"
+          },
+          {
+            "articles": [],
+            "number": "2",
+            "pid": "HHA_2005_7_2",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134470321680385",
+            "volume": "7",
+            "year": "2005"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_2005_7_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134470611087362",
+            "volume": "7",
+            "year": "2005"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_2004_6_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134469562511361",
+            "volume": "6",
+            "year": "2004"
+          },
+          {
+            "articles": [],
+            "number": "2",
+            "pid": "HHA_2003_5_2",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134469101137921",
+            "volume": "5",
+            "year": "2003"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_2003_5_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134469193412609",
+            "volume": "5",
+            "year": "2003"
+          },
+          {
+            "articles": [],
+            "number": "2",
+            "pid": "HHA_2002_4_2",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134468388106241",
+            "volume": "4",
+            "year": "2002"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_2002_4_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134468711067650",
+            "volume": "4",
+            "year": "2002"
+          },
+          {
+            "articles": [],
+            "number": "3",
+            "pid": "HHA_2001_3_3",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134467196923905",
+            "volume": "3",
+            "year": "2001"
+          },
+          {
+            "articles": [],
+            "number": "2",
+            "pid": "HHA_2001_3_2",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134467469553666",
+            "volume": "3",
+            "year": "2001"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_2001_3_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134467729600514",
+            "volume": "3",
+            "year": "2001"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_2000_2_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134466571972610",
+            "volume": "2",
+            "year": "2000"
+          },
+          {
+            "articles": [],
+            "number": "1",
+            "pid": "HHA_1999_1_1",
+            "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134466014130178",
+            "volume": "1",
+            "year": "1999"
+          }
+        ]
+      }
+    }
+  },
+  "parse_issue_content": {
+    "IPB": {
+      "HHA": {
+        "HHA_2006_8_1": {
+          "input": {
+            "issue": {
+              "articles": [],
+              "number": "1",
+              "pid": "HHA_2006_8_1",
+              "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134471642886146",
+              "volume": "8",
+              "year": "2006"
+            },
+            "urls": {
+              "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134471642886146": "eJztXF9z27h2/yoYjR6SXkoRJVGS03s749hx4l078a7tpL3r5A5EQhLWJKEQpG0lzcydPvYTtG/t9KGT79C3fJP9JP0dgKRI2t7sdVJ7M81MYksEARwA55zf+Qe/a/kqEK2H/V7PaenM94XWrYdpkgmnFfCUtx6+a+ml8CUPd7XOxJFMQ7zeajktSd93A3xxJz3PHQyHY3c07E8mI3c4QvuZCrNo/UJvvDEYDCdDrzccjSf0wlIkUgXSx9D5S8Oh6/VG3sTzRpPhyO3hpWwJMjBtJJ5EKd46AmVso/NdFnb6vf6Q9foPPfehN2BP9o/wuq/iVMR48ad3LZmPOnI913V7Q2+jN9gYD73fOvUnF/CpHUjzzTri01AwNWNbljqNtlOxOldJYLdSpzxJD/gcL8dZGDotEQfVr5goplm8Ac5p4pa0PcuiyitZ9XugpB17mU1DqRfb2EU8QP9Rp+fiH5oS4Qt5JvKm9YPgR3EmtQjWDRyMsUyrT0Qg02rHmUhE7IutYv/paaT9FzzMRPntaLVcz4TVH6Y8zcBvrYPjR3u7h08fb9NmqAT9XUyapQuVoPmnV+XBHgSz4vuZSA6kn2ZJPmSTU2ioqzm3+vgx1mEmoQY/0rupiA6z6ZpSHmlOD58kKlte9dqRuEiver4bB+Ji3Vgbp/I4SaUfiny+WYJldiKepiKpN+Y9dugFtl+8kKqUh8Qpes0Hz+NQxmJHJjotHuab90ylIt9OnS2XoYisqLwy3ZYi3szlH5uvyq970hexFusdudR0nIS2ZbY51WnC/WI/MG0ip1kqVZzv8OyfBE/o43tnLaDepDfuDyeQvl6/P+z1b11AD8EQoDtkIk6kv6Bt0SSvEXRjyHyw1VwlUtTltta4cvQqigSW6zNtR6vLdYsErhTr1qDX+gyxXqTpUj988CC46OJBVyXzB26vOxy4vQdPn252Sci7Z5Nu7Ha5e0kF3K7ge97xwKtJ//7hVr9nzu9vUwLvWjNswTMe0SDbPJbY/e1sPreCkJ/ktlhiy+kA6fwgJwsBaZK+dthxjBUmWqYranqe4Nhihz3O5iIGpDxPunile9jd7BKLJ74MSrY23+zHtJQCjCvz9pyPwXwbvfF44rk9sJ838lrv/98orvzblTprs2z7Haurl4ItExwNSxc8ZQJntGIQXwC3gwahMbVB8brU40PMpiLXGyJgMmacxWBo0ibnHKyGkdgl3dBlmxovYqFavMlIfognwayMuJH64jNplZwSNf0Z/Wh02GgL9GyQseAYDlNrrcAgkFe2UJFK1XIF0gJ8TJYLqSOWyHie05BFXfaIa9CEdUPdptBvORFaYKYznkhOepAnWJ/ZCugQEXRP4r9VtcP8GrrQz4PRxq2r9n3aqJCWPcvigBMLYXf7nbVSZzOVsEBCGVX3rabq+x109kncnFCBcMaDn+kBLd4pdzo/snIoHs7FNOHYYTSrUM1XzpU0rBpIMahDxfi2oKJ/x1DhTjaHPcedbPc8x/MOLi7w8wfz8/ji4qYQ0r8WQvZ54iv2JOFxIHUVQiRBiKRTUuALAhGLIbyCIR//g5qeiFid4fEuznP1mbAx7oGJcRyDb7DxFcHGdiHsm6WwH+XCziSpeBIXGCMzWCuBwwIhluGKgfRT9DmX6YKBfWXMocPBh2wh5wtB2gg0a2gXqImtQscfGfUC5GC//PXfSiWjl9wXv/z134EU3XmXQAADQs6CQumQorVvOQYmmpqONOC984UkWElK/AGRsYo7iTDsDuC7b+ir6q8/SvyU/j/EFV36xwf5Q3YvwUq5T4qXYK3asR23O3PiCiWDAnKYHwK8DK0+1+J+l+1IyCV6c6ZltCyRN389NB6Q3eLYYNEZOJygDLRGDjtfKKCYho4kJc3mEFuNswjFGTAN6AadTzKNJvwzuIs3YtrZYkP/HiPnwzG7PTRZqBWRIMFpMAoMIheI3TgoB2jMZIpJ32TYcs3o9xkPDdiDEjO7ZuudB0hX4R8nWewr7Uqld5cd8VPaGhUbGqGIVYaRVHJKj7AGUMD0gi+NVcHXZkK2ZEanNbDOsM85uqRZQOd+funI1lhlR6yzH3gyNBYL+tpV4aVKFwuMLNM0J/bNmhQXSzAKlNSK0QrE+c1Mi2HfGw/dSX94+17jVuV4GkZAzXpIiVHWMuKcC35a4wbD+2jws6mVVkFmF8SNDM+F4GfG86yaCOO6ieAOh7dkIwzu2kYY7gw82Ag7/R7ZCKPeTe2CwbV2wXfQPV32HSe9LKqW5NqZZGs3s+lXvsRhiyRmzyE3YEaH7SkY4HA0ywdbPOYB/0xroT/yPG8wcXHM36yFr8ZaOIITxpbQyxa5YlKCCpxjcMgCmwwEt8IPj3GhLEBuSQ2LQUuH8MagJRF/YWIc7c12Z60nLCboCAgO01bhXaCo8E8BoqkgWCT1iy75/DyZShBHOrqipFbFNJpWQpNUh+oSwDUVnnGiDGUVnDDALX0LzCWFtDbBAXqEo1B0xqOSb3M8zB1qA/Yh8GK6aq6wRpvx1lOzKmk96gRvLpW1HazJgO3PjCQYIhujGRuMTqLQx+l6acVa7IrzhebiId9CYZsBxQUn+8QhaE0v7UzuVV9S7cWDNSmOeW4tFV622yXQPBgVRo7f3HlLHF/STvMSfQ3H6FMJaNcFT+WgyyEJJlChVSRgkaZQMWaCKo03geKx6xKWesZhve0AbghTCxJhzWbspRaRtFYKWXEBGMAa2DCJTTTEHEoFwI1BWg/wXm52Lo/q6ObU5RTNALDJPFVAezS+JdAe3jVoG5ceP13j3hsAf+LdGLqH10L3YSpmPFbse655PJc8vplbvy9DjPJl3PoyGjwxElMh9omEQbyEjb4vyJm4e1I3NoYupLTfv0TqYwpvKrbfZS/Iv6vR+vEDEWtgE8rEhNw/fiBq32SCHZDWFSnbJPX0Jvv4QVRX8IEkEOJiXkXfPZWdQTs5xYdOyDvPRHaGTo9EOJcQgc9a4aRHIuYNehu9b1bT12M1vYRjS2h+2fa5QkMbP3ZhXFhrGVyFBBTpBygSzk5l1RObivRcCNhFNrZrnTAFb1/DKUhUhAFhZtT6mBkDgXGBwiw9V51q9MaGNWY5NBujqIEX160DiH0OE4h+0yoyKzU2xkHh+lVhMdYgjV8eqwufxAYuAqn9TNvxKARVLrc+DC1axjGMVKhZVVnqTayCUW9jNBkA0O/AQT+ObQbH7nlqQiYwmF/cc++z14x+te1iySarGFA1K8C83nYOoQmxh3HBQ01wN6mNCrgXhP6fg7t3x+AOL9yleP0P7o3TvN61gH7ETzkkjrPDhZQxb3060QuuP/Sl4VaHesV6kVVcdIde1RlZ0A58/KUxEb4Ivve/QcrXAyl7sEnaB6/je0uoALibcAApKl3V3HC8WHvZZvuK4rImzmmURfvF69j0IaUZQW2QWsEabKw1ZpsBtpAa4Gk+PHj9Lu647zENOzlJ5HwBlZEAnMzz/vIPpqlNLlwZGMgdwBga/2rt9TrCWOcimAtmSCHXjcLAoB0Eo20u3jCvbf1CaCtys4FZnKKvKi7jrgCK0M/CtcvY/ukFqPpDfwmCHYz8qm2z1HFVN+ZoN8MhYtKmUqTxaZi/c05Onkdiztk/vmrnkcwyt46pNcbSM2nWCW5RUZRBO8C7TW0ahLb2O+6rqSTfFa+kq5tAz6A/dEfueOjevkNKe08wzVNKLk95QtZLCbHw4tvftztXxIqvfsUxIxTjOY9UChsmXw/2polFk3ENi/rubWWQR3ftaG7sDccUF95wb4pFo18rOeLsQBmj7EcFtytofTo4vC8SCCb3T9mWCkMxh7n4DPMs2GYcEDQQHmnN/QV8wTTVX6gEadwDc/YnG71vfs5XBEpHVSsc8n8PqoOcl04lk3u/ohWsva8jpcBPULBUIgS5YlS5I6BJNdm1VRN/XZBSH4Taik6F+q1mjy+/neF8knBlsrvNNLPxN+Bc+VDUtKBzk3MsIGPGIxmacWo6zQSur1Z+tqYq4tYjATSrOaU7MehmKld8YUKcVEllwry5l1WdiOp/ljj/ymTkSl65wC7btXuF/aTzMnhnwYty+ToLU0bJV5q+qYYNElfXUFgHZlu0AWQt8lE0mxG/EbYCv2xA1pyRUT5mTdBSlKcOqhmmg0V3u2tqtIDp5hRML+vf5mv/kYfw4rbUQsQ3QU14bIC9yXAwvHXU3FLEN2TT50e/u/sQRzuT4NrY7FWiLmR0hZcWSD5PeLQux72ml+MXUzRAs+/WU6o2oXwboDm+a9CcPPHIgTt2bxyRHV8Lmgc8C9kjHka/tUr38dFT9mc0JFnksD9//B+qq4Qjdy7Tt9A4FnQ/Bxq9CViz3xu5g2aQc58qOENTW78Qqwq1u082j0DYwc5eM9m7xzNNeulLEjgejkbD3nAyGn3D7q8Hu19WamSBFEUZj83hElhYD0lcq80K/d8o7G0f/+Xw3pazDTeVXLTDdueMxBZu6Fa7I2mn8TlXfnkys73d7jRLTGwkk1rM7GbGdVwwr29eu4Z5StO4hbbguEZrlz2FSnGInEt55HJ9wF67C6ZMaJ0JblybyAljv/zrv7CttklS2uz1umAGbmjNBy0SrbbYiGhcZ2xVKCMsgLxpu6gbVRWNJt4GBHEA5/HWMXCH7JY8a/xULWeF1WZMr0SIsjKog7eKxjoYVrtpx3RyYIAVJW/NYqL+cFCHPu+2YpeTu4a+0cuLC0pJ3jwZObke+sRS/hzDsI4ZmWl7vJaOrEUsd2G8yjSjCo1jHJe/SGshy/yZYyI6zwSVOxDQ6M9EmiLfN3CbULgrTgXbVyIJ5M+nvyuiJ5CZwcbAHXnfCp++Lni0xaU1jVYW5hjvD+7YKlYRYUShuyoIMjXKXWWmspk0mvHUTJ6copiJcdTWEEz4IC6kTou7NZy1+3G7gw5gcSodXvuHBuEqtJhSJqNpyxmpCilu599vkgYb4z+hQc+7/VjkTgn59jYS10sIo60u4rGcqTCo44earn3pPAC5NhvyGzC+ErOZpExLqp3DBV/KRBmvdU9EUfPuY99rRCRH7i0hzMYdI4zn7ZtK1R/NzyOXfh7e/ELkxq9EJ305FcmcPVHxx//moa0ZrjtcPK8oEbai5ON/2pKS3f3HnePDAzgxH/9LMfLYlMMeJfwtNPAXSo5dcrYOjAy+VPH8t7mFj0CwXsdQ98Q5ZJvSEftUzvaFwqZlAcy3KzhfEbaYXN7s5ISUc8wes5MTis3ZtJ7JwxUhUD9UlAMDjbG9vEDeRXGts1CEeQAQDgTcC1vcQRk5umYiiBLr48SBLdo1BaWzNnkk+XR2GFbqy6tgal2fIuHT7YDihVKnlfQgLQL60z9NRPhu9v4dLek9rcnUuJZjF+W8O3+avX5Hacbp/Ta8ssc25dZ+ZN2pS8tO6WLnnFJ/1+xB2Z2mK8HCISyIsdx//su7x6/f3Yvvv39f7rr9Xu49OuosyQPSZdlx/lYbGog21xaiUN4VXqs+FaFIrTtXriD+08lJICOMeBPIHZg6+V5/cvu3TjebfjwxigXOperYeHANchtt7F7xwH6/7/Cc4Zvlv07zbxQ42CQ/SwiVVs6VFdhO8fvjByrmY9MsDkJyEZv3gti9QBaf7zt53VUT2kcN53HjtuKmNqv7ewicDjxnNPlhsr6X8hmhVFgI1zuUhJmPsqmIZdUr+xXY3ArFmSC3i5IJqag5aOu25wu6l/JlMo99t+d5/UF/2ET875O3K/02pSsyYNv0VALC/be/bRn7MiAOFRdrC+Aubt1Mer2xB9t1wxt+MxC+IgOBVClcPYPCPOwUF2SbqjbXvffZAtoReA6wM1cWAWm5ki00a8r0CgwX2RhqXk1aj7fm92G0KKYxDmyRpDT3Wpt/SgJbA2O2uDFbvUjToNDMWi9y/fS1G0BrE2Tyuzb26mt+4c34cI17M+bakb2oei7yipyZASB2OdBcWFuXaL4isWotq5hdVYJ7aVXVC071wcukdfX9Orjlnm+jo7llTLyRlzXlOWteu5NkNxnbnYVBedaczZWCmUfRBHPxls7bhDjycrAmo3zafnl1rRJ4T1gyx6fnJoFNNOV/qg36tdt6/7807Zdl"
+            }
+          },
+          "metadata": {
+            "collection_url": "https://link.intlpress.com/api/bgcloud-front/periodical/detail?id=1804415065855684610",
+            "issue_url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134471642886146"
+          },
+          "output": [
+            {
+              "abstracts": [],
+              "bibitems": [],
+              "contributors": [],
+              "date_published_iso_8601_date_str": null,
+              "doi": null,
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1806151110459039745",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": ""
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2006_8_1_a0",
+              "streams": [],
+              "title_tex": "Table of Contents",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "We prove that every stable, presentable model category can be enriched in a natural way over symmetric spectra. As a consequence of the general theory, every object in such a model category has an associated homotopy endomorphism ring spectrum. Basic properties of these invariants are established.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Daniel Dugger"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2006.v8.n1.a1",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805807248658022402",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "model category"
+                },
+                {
+                  "lang": "en",
+                  "value": "symmetric spectra"
+                },
+                {
+                  "lang": "en",
+                  "value": "55U35"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2006_8_1_a1",
+              "streams": [],
+              "title_tex": "Spectral enrichments of model categories",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "Directed Algebraic Topology is a recent field, deeply linked with ordinary and higher dimensional Category Theory. A ‘directed space’, e.g. an ordered topological space, has directed homotopies (which are generally non-reversible) and fundamental <italic>n-categories</italic> (replacing the fundamental $n$-groupoids of the classical case). Finding a simple model of the latter is a nontrivial problem, whose solution gives relevant information on the given ‘space’; a problem which is also of interest in general Category Theory, as it requires equivalence relations which are more general than categorical equivalence. Taking on a previous work on ‘The shape of a category up to directed homotopy’, we study now the fundamental 2-category of a directed space. All the notions of 2-category theory used here are explicitly reviewed.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Marco Grandis"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2006.v8.n1.a2",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805807251141050369",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "2-functors"
+                },
+                {
+                  "lang": "en",
+                  "value": "local adjunctions"
+                },
+                {
+                  "lang": "en",
+                  "value": "homotopy theory"
+                },
+                {
+                  "lang": "en",
+                  "value": "directed algebraic topology"
+                },
+                {
+                  "lang": "en",
+                  "value": "fundamental 2-category"
+                },
+                {
+                  "lang": "en",
+                  "value": "18A40,18D05,55Pxx,55Qxx,55Uxx"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2006_8_1_a2",
+              "streams": [],
+              "title_tex": "Modelling fundamental 2-categories for directed homotopy",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "This paper is an exposition of the ideas and methods of Cisinksi, in the context of $A$-presheaves on a small Grothendieck site, where $A$ is an arbitrary test category in the sense of Grothendieck. The homotopy theory for the category of simplicial presheaves and each of its localizations can be modelled by $A$-presheaves in the sense that there is a corresponding model structure for $A$-presheaves with an equivalent homotopy category. The theory specializes, for example, to the homotopy theories of cubical sets and cubical presheaves, and gives a cubical model for motivic homotopy theory. The applications of Cisinski’s ideas are explained in some detail for cubical sets.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "J. F. Jardine"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2006.v8.n1.a3",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805807254257418242",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "test categories"
+                },
+                {
+                  "lang": "en",
+                  "value": "weak equivalence classes"
+                },
+                {
+                  "lang": "en",
+                  "value": "cubical sets and presheaves"
+                },
+                {
+                  "lang": "en",
+                  "value": "14F35,18F20,55P60"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2006_8_1_a3",
+              "streams": [],
+              "title_tex": "Categorical homotopy theory",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "Working in the context of categorical groups, we show that the semidirect product provides a biequivalence between actions and points. From this biequivalence, we deduce a two-dimensional classification of split extensions of categorical groups, as well as the universal property of the holomorph of a categorical group. We also discuss the link between the holomorph and inner autoequivalences.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Stefano Kasangian"
+                },
+                {
+                  "role": "author",
+                  "string_name": "Giuseppe Metere"
+                },
+                {
+                  "role": "author",
+                  "string_name": "Enrico M. Vitale"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2006.v8.n1.a4",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805807257117933570",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "categorical groups"
+                },
+                {
+                  "lang": "en",
+                  "value": "semidirect product"
+                },
+                {
+                  "lang": "en",
+                  "value": "split extensions"
+                },
+                {
+                  "lang": "en",
+                  "value": "holomorph"
+                },
+                {
+                  "lang": "en",
+                  "value": "18D05,18D10,18D35,18G50"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2006_8_1_a4",
+              "streams": [],
+              "title_tex": "Split extensions, semidirect product and holomorph of categorical groups",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "Let $P^n(p)$ be an $n$-dimensional mod $p$ Moore space and $V^n$ be the mapping cone of an Adams map $A:P^{n-1}(p) \\rightarrow P^{n-2p+1}(p)$. This paper gives an unstable splitting of $V^m \\wedge V^n$ for a prime $p \\geq 5$. The proof is based on explicit calculations of $[V^{n+2p-1},V^n]$. As an application, we define a Samelson product on $[V^*,\\Omega X]$ and prove that it satisfies anticommutativity and the Jacobi identity.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Takahisa Shiina"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2006.v8.n1.a5",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805807260968304642",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "$V(1)$"
+                },
+                {
+                  "lang": "en",
+                  "value": "Samelson product"
+                },
+                {
+                  "lang": "en",
+                  "value": "55P15,55Q15"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2006_8_1_a5",
+              "streams": [],
+              "title_tex": "Unstable splitting of $V(1) ^ V(1)$ and its applications",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "The holomorphic (or semi-topological) $K$-theory of a smooth projective variety sits between the algebraic $K$-theory of the variety and the topological $K$-theory of the underlying topological space. We describe how to define a family of dbar operators on holomorphic $K$-theory in a manner analogous to Atiyah’s construction of a family of elliptic operators in topological $K$-theory. In the process, we prove a result akin to Bott periodicity for holomorphic mapping spaces. These results first appeared in the author’s Stanford University Ph.D. thesis under the direction of Ralph Cohen.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Dana Powell Roland"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2006.v8.n1.a6",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805807263241617410",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "holomorphic $K$-theory"
+                },
+                {
+                  "lang": "en",
+                  "value": "dbar operator"
+                },
+                {
+                  "lang": "en",
+                  "value": "Bott periodicity"
+                },
+                {
+                  "lang": "en",
+                  "value": "19L47,55P91"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2006_8_1_a6",
+              "streams": [],
+              "title_tex": "The operator dbar in holomorphic $K$-theory",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "We establish a general method to produce cofibrant approximations in the model category $U_S(C,D)$ of $S$-valued $C$-indexed diagrams with $D$-weak equivalences and $D$-fibrations. We also present explicit examples of such approximations. Here, $S$ is an arbitrary cofibrantly generated simplicial model category, and $D ⊂ C$ are small categories. An application to the notion of homotopy colimit is presented.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Paul Balmer"
+                },
+                {
+                  "role": "author",
+                  "string_name": "Michel Matthey"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2006.v8.n1.a7",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805807266097938434",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "diagram category"
+                },
+                {
+                  "lang": "en",
+                  "value": "cofibrant approximation"
+                },
+                {
+                  "lang": "en",
+                  "value": "codescent"
+                },
+                {
+                  "lang": "en",
+                  "value": "18G55,55U10"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2006_8_1_a7",
+              "streams": [],
+              "title_tex": "Codescent theory II: cofibrant approximations",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "We study Hopf algebra structures on polynomial algebras generated by coloured trees. In particular, we establish the existence of a $2n$-parameter family of such structures for trees coloured by $n$ colours.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Pepijn van der Laan"
+                },
+                {
+                  "role": "author",
+                  "string_name": "Ieke Moerdijk"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2006.v8.n1.a8",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805807268597743617",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "Hopf algebras"
+                },
+                {
+                  "lang": "en",
+                  "value": "trees"
+                },
+                {
+                  "lang": "en",
+                  "value": "deformations"
+                },
+                {
+                  "lang": "en",
+                  "value": "16Wxx,18D50"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2006_8_1_a8",
+              "streams": [],
+              "title_tex": "Families of Hopf algebra of trees and pre-lie algebras",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "Let $f\\colon E \\to B$ be a map between closed connected orientable manifolds. In this note, we give a necessary condition for $f$ to be a manifold fibration. In particular, we show that if $F \\hookrightarrow E \\stackrel{f}{\\to} B$ is a fibration where $F=f^{-1}(b)$, $E$ and $B$ are closed connected triangulated orientable manifolds and $B$ is aspherical, then $f|_{E^{(n)}}\\colon E^{(n)} \\to B$ is surjective, where $E^{(n)}$ denotes the $n$-th skeleton of $E$ and $n=\\dim B$.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Daciberg Gonçalves"
+                },
+                {
+                  "role": "author",
+                  "string_name": "Peter Wong"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2006.v8.n1.a9",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805807270728450050",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "obstruction theory"
+                },
+                {
+                  "lang": "en",
+                  "value": "fibrations"
+                },
+                {
+                  "lang": "en",
+                  "value": "local coefficients"
+                },
+                {
+                  "lang": "en",
+                  "value": "Shapiro’s Lemma"
+                },
+                {
+                  "lang": "en",
+                  "value": "55M20,55R20,55T10,55S35"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2006_8_1_a9",
+              "streams": [],
+              "title_tex": "Fibrations over aspherical manifolds",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "Locally partial-ordered spaces (local po-spaces) have been used to model concurrent systems. We provide equivalences for these spaces by constructing a model category containing the category of local po-spaces. We show that the category of simplicial presheaves on local po-spaces can be given Jardine’s model structure, in which we identify the weak equivalences between local po-spaces. In the process, we give an equivalence between the category of sheaves on a local po-space and the category of étale bundles over a local po-space. Finally, we describe a localization that should provide a good framework for studying concurrent systems.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Peter Bubenik"
+                },
+                {
+                  "role": "author",
+                  "string_name": "Krzysztof Worytkiewicz"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2006.v8.n1.a10",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805807273077260289",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "local po-spaces (local pospaces)"
+                },
+                {
+                  "lang": "en",
+                  "value": "abstract homotopy theory"
+                },
+                {
+                  "lang": "en",
+                  "value": "model categories"
+                },
+                {
+                  "lang": "en",
+                  "value": "concurrency"
+                },
+                {
+                  "lang": "en",
+                  "value": "simplicial presheaves"
+                },
+                {
+                  "lang": "en",
+                  "value": "sheaves"
+                },
+                {
+                  "lang": "en",
+                  "value": "étale bundles"
+                },
+                {
+                  "lang": "en",
+                  "value": "directed homotopy (dihomotopy)"
+                },
+                {
+                  "lang": "en",
+                  "value": "context"
+                },
+                {
+                  "lang": "en",
+                  "value": "18G55,55U35,68Q85,18F20,55U10"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2006_8_1_a10",
+              "streams": [],
+              "title_tex": "A model category for local po-spaces",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            }
+          ]
+        },
+        "HHA_2023_25_2": {
+          "input": {
+            "issue": {
+              "articles": [],
+              "number": "2",
+              "pid": "HHA_2023_25_2",
+              "url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134486872403970",
+              "volume": "25",
+              "year": "2023"
+            },
+            "urls": {
+              "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134486872403970": "eJztXVlvG0t2/isFgQgkTJOX3dx9MYAW25IX2Yooz53J6Foosotkmb3QvUimBQEOECDPwX0KkAAZIC/zkNc85SlO/oh/Sc45Vb2R3bLEG2hixMDMtdhL7XW+7yx1+npr7Nti65HVbBpbYTweizDcehQFsTC2bB7xrUfXW+FCjCV3noVhLM5k5MDjW1vGlsTfz2z4YfabHbPVbve7/Z7VbrYGvSbcv/Sd2M0eaPYGrVaz2W112k3L6sIDCxFI35ZjKFo/1G6bnWa30+90uv1218RS4gU0A6p1xaEbwVNn0DI2qD+PnbrVtNqsaT3qmI86LXZ4fAaPj30vEh48+MfrLZlUDf9rt3r9frtnNgdm+65Vf7UDXxuBSA/W2ZXPopnwA+GGzPfY2J/5ru/4U2wAW3AZSG8awgtzsbzyAyxwHC/YIvDteBwZwh0J24ZH8MrIEa6xH/BYBF8+/XLMPeklJUABYcSD6IRPsVYTfgvP1r+spmqwh3c6LZjvvpn28VXsbj3yYsfRfcr9tn0Jb8yiaBE++uEH+0MDLjT8YPqD2Wy0W2bzh6OjvQbMRKtxaXUantXgWOwiHjkynD2GqaO6rVa9OahbPbgViLGQlyK7ZdabvcIt+1RcylDY2SNWvdlRj3BYoYto5V633rSws7aM9HUqbCIC4Y3FQbIk8Kobjn/HnZjGxzxttY1O5xVNNtw4Wy7w+vHwwGrSNWgPzMYw4lEMm2Lr5M3+y2fDoyePcaD9AEo0oUFxNPODkBbcBEbsFXexkD13FMQhO/n8Jye3EB6LBcyPC61h/oQdc1gULo/kODTYMxfXJCyHA99xxBQW+Uvfs33PYG88CR1mL2CGbd+F0vxgLO03gaN6RL/Un5HqAA6FyyXe540Fd3alLrvBx414jutArdlWqz1o9vq9gQnDaPZhTd8YhV6c+a4I2HGDDcczh3vzXFeeSC+MBCy+Z/CvjOJIrHXpSIwCcYXtvxRBKKMlPvFcwLhwXMTsWRhw4dyvQxG2qBGq5uxO8WpjTKNS7NMA+tNvt7u99tbNz6lYOLEnMFH0G5p0IsdRHOgKVuUMznG53MtffgJLjmYfb4zd8Fkk3GE8Okvbzd2Q48XDwI8XZY+diQ9R2fVnni0+ZDcL5eQuBzDUjtD16V/F6/rhvfRe5EfcQakQZnv+tedITzyVQRglF/WQvfIjfBAHLYwXC5g4JV5/ptcWwtvTmAF7wU9/vpRj4YUiG4e1W+l0T/ZGYRTwMTbyJ8GmsFgYZ564MpiAjcBhr9giHAdyEUmQnbCEYImxM5gsZsfcwWWl5R/jIbxZLhvZxA/gfujD1OFuWpOp8Kpn44+k+kRio8DGGnMSuXHuaagJ5CjGZukVMPmD4AH+ifuoAD9tswkyBfZa/87I978GP0PhTOpjxw+FB+PPvBj6HoQ4kp7v1UOQDs6yDr3xxBiHJlxwmKcCGoVlJRhTXItYDN0W72N5CRsbJG5o1M7PQQrMAvf66OaiWatTmcbYr5ffqC1q9ViJCZCAdG0FzKwimrW6D4Vm1j3RDODIrFvNr6NZ9xY0M++PZp3OidkENBu2epuimVWJZn+Q45nw2JlPJOMOaPZi6Ud+TvLrKwZ7zhfcu6/I96aNJbWgYXXc3TBqzLGweox49m5RLfu732X/tyP7z0DGlsoZXFycZfLp4Cf4ATJLfGAyJNHsCB5GTEKbp/B4zasx0GRmcItHINWJdsgoVKW7fBHCoyDGCTE8KAO4eLCYydCF6wwE1EJenJ9DiTUCjRr9zc7PHfE+dBCOoHyJSIMkPvIXS5YTfQ0GGKZQhKqPYSoBeJgrHRv7AGtGIqmLbu9tqWCeSGSCaefHvvRg24iQXclI91b3NJOltNjZFewdgX9gtas3qS+67FLxzBA6s9rLZTh1nMA7xJqgdJyPQAA5hHEWHzg2GqbLh8ZImhzB4G7swBTB0pIi3ARV26bV6bc6Vrfz8EodcgIHKIWcLLGLeqgUPTF/YzIb5IkXQjdgLGqHNZjIEchfXGZjkDZTP1gWNb6128Za8UahnBWIJMGfQWSn/VAQ2bq/wgcY9zWFrwcFVEGkvnd/iByYRqd32u9sCpGtSog84AHsZDaEmbuUPLdOEv3IBxqLICncz38CccwBJd+82js22Gv+gY853n0ef/5TID4mlwx2/PnPH+TYvx9ejkPVhl0XK2vEHncb7odqra//HSW/HZR8mpfFioCDTDDYFWhDAi4LEj/l4gbhLRVKLLrySWaHM590nUAoJPA9UQdyBf+ArA9ARC8AtXBbsZGIroTQ2lCKSghH8LAXhQn6rEtFVK3wLT4SjgS17CNPdDloaYPtOaFPXYAO2KuYrAudAJJyHFmQplrx8CIyq0GfYN9GgPlugl+j0fXf3ABk+wsnDuHf1y4okm+vh69vLq6tG7a9f7iDY0adrpXfTrjFJBAIgBJqhs7iwCbDqlqxOqYGdRb6EkaxvVRjVYYS0EMYcBi6IEJOEcYjPU2IhDgv/iji0qsoYMZV61IKgmIgAR+tpUJjf/jjoXH4MwxABE0E4fTWTP/+/dvD/BAA5zHZNlzcYb+tGLAGeyoBy5wlTdUCVgYyf+qHAnJYPSM/jvJNBjmXm2lYV4vU7Pk+hn7DlE2kcGylbEPX19foBqyg1+k2AayttvXgrOCIi4kjp2iA+McQmU3gc2A7SCTDBQw2dX3u+TBYLsyS48MacFFHwn7l6UBqoCh50MiKSh8zJgFsDxsGL5zn7RsrJKHTKZCEXuuhSEK7nCSYzXqzXU4STLNwq4IkmJV6dK8O0HZ/ktA7bTeRJLQto9N/vLltuF1JFV4JEUl2yIGIL/kdzcMvuBfCnsf6REGvPuYeEH+QIfBM2ABO0Rg29hr3YwweNmjq7M7DuCHseI0qdKxBz+w1263Wd6rw7VAFkOpACc7Pn7ija4BCmCNs1jX8vLmpZcAPWiNKJ1JIyfJH6LQuYErkEAIHFMe2h29h+Q3fXnu/eX8D0IkI6Pio9n39ZVC1cdGj52P7MRbzOCkmUZJpM5TyDRlmTGGMqqUCMnjfBMwaHkKbDi/e72g9/j3g2jTR4VtIO0JlVwhBf0eRQLiWjQpAHbUAtFg3TLBVdQvYOSCffi25BQDFgSFAvT+y4eu07hkni/JUAFDCI2PmCjRMTwE0HU7KMTS8dLxxGLPx2gAIAaesXrvTsVp/AZ9nnp2EvnPJR9LRPiCcQhzBl1JzWNVXfHwqPD9GM0FGFErs0Qd86YglW8BUCuMwAKrhcs9j2/A2mh4QJtjE4VMqdhhJEPrODoNn5MR3bKN2lBieHR9q0HTUqHm1Ot7H9rkxSFpYNS5fGJ50Fn5EZIdeSn6Pl2w717MdRXqgTH+hnzzxw8iTc/+ShcsQBI4xBAQAsuulvl1oeDjLfsUgDxX1UQVcCXsqkNkaP82A8c8Et5OHV4C9VwT2QeehgL1zT2AHZG5/3d07qJOfvhTY9b0NDOQdw2wfmz3Dsg6aHQOutPG/p62N7QGdSpA/5oGYs0MfloT8778L5zK3N57yMdDl5QrI02I9gK0Rg8Rhw7FUMqnoPv2JB67k9Ogx/xgHwABeO+HHaAmS8wQq8+z7Qb+LzZyiqQB2RyO+cpEANBbOOgdodWENtQeDwXcO8O1xgKfXqWL89AY1Y7r6Orv6Ort6ml09za4eZFcPsqtH2dUjxSo4qIjLUBS10xX5nymIKN9zKFB7ve0h8Nfe6H+HC/yDlrsN8AVIirYAVFptLGu0ZGQ/t1F/VmU02DN0+uLkxA4PjFsbUgJEwCmQAngAtwBhnlFU5W/rUSb3w9SowLYPgY4YLtARmIQd6lN663fFW9TL7O5TuPsj8y5MA8Ya9MWx4V3Mb5JnkdFkwFcr1AKVaMxjtUIdqoo1kKzdUlUtRc0w8YY8JQvBqQH/OdAkTenwMA6B4E6I/oLESZE4m3XfjhJWNxdX+Pu0VufOVIwCjm+/j0FiBB6xHfY0DtAqBexO3D6JxbHPjSD8wU7eWnq08LE8b6AH8T6ZegRgKWEYDAroWVfCcTYhXO1OD2hVs/8XJlx16V1yoKOanSLHjQLgDHLkIMMVQEmLhIp4kLNUT5I9Ch6aGOsvTowZiKBA/7le3QorGRR9EiZp5A9CS7r3pyVWnaIMbqMl/brZqqIl+t49aUnLGnbRb/+KCMmrFv590tmYkHQrCcmJQFrxvMGOOCDT3awORe5xAEIDdpInucH2RTAXsJcMurih3WExw6Yg+Zg1RrrA2w0Q/dUItWMeBz4wnyAq87mgU+VUjEGMwP+pa5//jH0DxY3tXcJ6/fznPMP6/Gd8YQjgGY78OJga7GmgF/V9eoWNUZ2KPYlQ3JgEJe6XXstsdVuD5mqXnoN+WN/niwjeFexMLAEnRVDRu0KfQuVEwufjYreGfjBCDRpIImzUcLOOvcOGjXTDGpFu2K5039UXwbSskwOrb/Y6AwsI9nfS+M2QxmfodQBMXPAFxg7kbSIE9rE3RtU4BLlOMRQM34wkkAB7XXEHDldj2lEDiCu9SbSs1VOX1Bo6bRO+7GiQwuA7LIAiHMa+mEwk6kUR+Qk4A4I31VQSS9I+CY7lrNVFzoVwHSKjBjvzme1Tn7UXCiYgYwQYjpGGZiSeDmQUa6BZbDtQGHhIRz4YTE5Y7fc6ciR580rwuSqAxp4GYH0ENXdCiQIXr5/c6FJu7e6SSJOH/dEhlVDLOAAQwLa7wI1TVpS2P4P2dJIL9aLzyGdp9MdwdvM2/QHvAsv8/Y8s/wJSUYpiITNXsoBuq486FsjpLGLcfudLL1IONYkeQByyCYelAH/mx9MJ/bKhBFUgUjcdgUExYRreqSkwc33PtwPfLYTwUH3JosFZePH5P0B0RrPCwK1NftqZy41CWTp9y+x3B91e8+FDWY7UaQRQcQAVQiAsiY2J9h95QHPKzSPtDlWevUDoYCKyWaFmtsosU2auDz0sjbSaybo3G+fO91JqucInTWtQJJSdByOUvUpCaeZY46oD6w6EsvJYg753fztXB0nkqYkOrCfNjalkr5pKzkD5WiwEewFYVKAmT/kcxOPnf43Y5PN/BBmZnKMHK3DCIIYVkh4ZUA+dAUHzSOSB9H/x7Gwn96zBDkEF5N7yvsRSNbAxpwbuzmVUyivTSNHvjq1viJ/8pCBE2iLntkKkesndkc3ZMXv0W3b01kS/lGmw450aIjcKImIJQ3/kO+JS04YaPFhLQkyVNSh0fR+kfWL4YLXjxGrh11Hoo92kKBMpvuG4RnEbEZ8L9j72I8VT8s36gR3WkpCLw1oh8DKxX1FJr7fRaIGSEGBztGQ46jwAUQuKGicvUi6ABvqoKo611U18QH6eOKYSUUtxrzUMiQHkg9XoQUHXUXDDHrEjFe6KBpN8U3cU3Jfc3SFGp+ONeCrX08AT31vv9qXkygQz4+GXT78MYfUA4HpqEJNzFdiNsfK7yTCLYzm5gAKUi62IT0Dd4CowORD3NCBQLbA6eDTi0LFcGzRzSX7XdBSqQi/kmRmkGYVSttFryF0X/op2cGGlP816RPxGUc/U4pjGveIYxSqWZ6ys+rDY1gZz+NaDAcpVmDCo0ej6r29AFnpYY8SsmpGGUenen5//8eSi0OGjC3n3otNQoKOLd3d9a+cmWRTX8jfv6t5N/kXvh8q6zs9/zh2+gQLKKESDndIF4lUnubLGsE5GgoyL8iO8/+XTP6XuVHz4y6d/hpFWHJNkA7I3L90ieW5Hm175uEkg0ApKQt/e03kieO8Sg8omGmgLcW/pWsetVzlmtXSqbnteCQO03sKrIADQ1a1CtPQPJQdsH9rr+RF2G8Utlx52GEsvH8Uz3DwuceiRKIRhkxqFIX0YLwezsPBBhUf1IestaVZYdqbzaBM7DLktQnRUJQOCUeqqWioE+5z7+VR6oYOSh+ZJq3JvPS1LHR6hPUo1kztXfBmq1iqBuAGD7prdZq87aLda/b+Y8TWZah2ugAvp2A/4JWe1J7U6Bbkty5XZWs5Bc7GoFTj0DAYJtoTSkoGLwDCrUECoIuBGqp/oC04ammCsVb7KpzsrfLr/YAer+vfj0+YgDfuu5NMm2XA7pXza/BUHq9ot4NNnJhlorY0DwvqVfPplPOchkN4ImLOXW1X3I70OljKHQmZceLtTF+ZArDFe9E5Y7Y7V6ayaHYcCpOyZxOiEjZsQQhkRFXHb0dx2r90d9IB6fyfd3w7pfgl4VBMXXg2ldC4CHEWcOkekXXHr8k6JJYzOfoLvw3MzQWK/5tXIXVu0NiZkiTy9iUzNmBO0IcctUFhqBx+e9FoEsEpYbaGdqV7+2Fa7xoBf51HPBV1VLhwKUr5E4hyp4BvlRIbdjAqGD0ScvJloCqSWrllEqwUwG3GEToA+nhfxT24uWpnns3ZKusBKa4gakNX0tFan6DmFzWjnJ8DngUgjlfCFoS5PUU4y/uHJqqVqtD5rBdoEgMoc4YMmrbZ/knBheGju+Vcednkk1hrcThu8CTZ32iB1zOag13twbP4JR2Lfj0Plpc6HfGVxZ+RYBo3S1ZFe2h4JsyJg4fMpkK4CJJeXZ6yXYMDUCSc703UEYu1Kjj9Sza78AKtDPZGie2iEyqa78mY+Z4ieiVU07xfdrShiHwjNBxVoXjSBrZ6Bbn3VOtZqVlnHNosCM/uHraYB/+0gmr/ZPPJrUInmv5NkyT7ggQu6zNZq2Be31w+CKRcsHW+hY2Kf/1bNb+bEs9VrQxgkx4Hrw4VakfcA58uxapG5C1opWWkrqMH3lBnfEC7jqVsd0PNRZGLuy6dfnoJyaGNEoD6McqbzWaDgOYJmj2ewej269TInw9LnMCxZRBGFIiujFSm0S5BvM4E6NAIQ6qUhvBeS90/jofiAUaxkf1KnmEhbEa6sF0SaOu4TRhjUCo+u3kuNWnSYO3G8IR574ZUIjERRBYmsgo9Ka0CrCcOhTBJ9IPxDUwEIj/kShumEzpFlJ5cK5rMq2EC+USLJ6RTWqjhn20k4r4KbMUY9JAFSItyhfpKbCt1TgCCUfYQORY91dcQ0roQeb6BX0iGEGIkJhUeJxrTBEDWkkzMNono+9icSBIkXAQ9Q6yQqQRw64V2o0GduGgiCOapmS9T8N0F+EC29XnvQ65oPjvyvPTaSCSsycMgVjTIoowyCNKY4o0k5A3RN6JtWx9fcxwUCkHshdg1ttljmzm77umIjbcIKWltmUfdWx9UeJkVX8/5w3a9b1lfhmh4pg2tQ660NoqPM7pmJcP3Uohgpy6Kg7damoA1lVaH2c0BG2GbAFGEl26Ejllt3CJHSBwxQAJZFTL0Sl9wGtD4Vnm+wV5cbxkm9GyVt2o29oNyTZXbMXqvTN797sr4h8D7LFN8sADVMM2jkg01SeSLHmeCuklQGSSY6fkthJsrgqPR1Ld6V40yrq4AUeU1SG9e1JTM575wc0V1NcULGgAzRVVi11lcJGvXfpG/yTCInVl9uuxIPQEscgIKVE8MzgPkWkAp6nCUQQX3dT71BdGSbzwHqNTPg7gjtq9kB+G0OzVgoAoCgr89gQU+2x/7OSml+ljAFKJSKYUmDlXMTkhg+0o7tZLlQois/y32Chg85RQd46WQ+UoFHBky34/hXWN0R5oW5Wj2qx9GZpx0KmX7u1ep5q7B2Yi1mkj1ie8prs69t7zlXTHlIVgEeMTo68aBEXwvlKkx2bR/P4JOT6WIvrT3zoibVgNSGlv8I6x4z5OgD5lmfC9hMVg8OC1avbWzaYgGF0SLnbN1WnjQqt21Sg8cdOkb8h5pgSz6lbC7Q0z3PBom+75CTZIphCgsPOemRv5hLbVc4FR/nbFvVRfkZMIvdiOgxMC0QsMsd7SeiXYTBaWuNT+u0BR18RN5N+e+wQfk0CcoClmUqKPCTZEMgMadDlLDxMAkS8b0kNGttmKe+bxdWb5W8QEiA/23ADoG0da1Op9UcNB+cHf6NnNY/8mkinx7BQkmiDsl4OM/5TDLeh0FeiYKg3jQ+6oJytwxV1sTI9nntRYUPxiI+k+OBvQfL3GNW5Gq9jQe273Iq36qMkh+oIPt7m22eWh3DHBw3OwZFzG/MAKtTtp4uYf8cBty+C/ODTaBP6AHYHqNX1uMlp/P3/Y/wvAePRPfkfAG0pjHF1pi7riq/lPilVpu15K17HjYJ0+ZNJCj7d6az60cQn4ComIFE91bobRq5tcw9Y1BMxiuBh3fQ+hDer9+8Mcf0rrrRu1EsGt76acTUh9T7Tne/Hbp7siY7w+R4PChfMSLLjNLieMnRf0InRJ4swjxvSSlEjqfiO/Mp6XHKRXVPlaNHAXBVAZpwu7DviALVXSAxl8SX1sU/7H+MpULWgq8l/VIpBAKQjWwSALACSHz59A8IExPpUG+QiG9Lb+zEFEaPZDfCrEu5+zsq5oewPZ66CtlLmpCwDLjm28pOR9QNcyep8GTuCTxXD4qFF2mTE3mIpA0X5GSJ3CEfJ4NkLuP0ScAHz8c5QXO1oSnrW573KychUHAP480wwYPA2GwsfcFRIUmJo5ef31ru9OlKzqHEM0gctgRYsS2ZMdSuaFfKw1Y0ohEG/T2JMWRlHAcpDXhx0awlFF8pJBTvlZsE5GgBxwzCYVo4GRj345Hw5JzKeeKM0WrqbUKSut1eq9tqt5oPnzuYsnJqOkqJHCcTjB2ieMlDP4ocKUaYp1mBidq3aWyfMjPSs0lO34xIrb5tZK9JT7oUnQ+vrydBTKPGR2qXGHQymP5cZVYrSRGswYNFt5gVeYNvY1Zwq/MVZtWtW5VJEQfq3v3DW7qWSoJAQeMbO8TM6vTBh4Ha6C/jRVSILrm7Xe3AAdHlJFeLJCu9Z7DXM+lvZmM7bKjW7Y7D2IdSys8htq2eOWj1O4O16BnuxrDW92GnwAZwQRe9SzcNNuQSrj4HvW4xI1dMvmMYZ89hD4CGx+GX8Lxw6cAOwV+b9DHEdu2G78qzPHV7g3an1R10vx/W+4Y4VZLIqUQcaxoV6KDaLM5BSWQ6mJVLrKTD6PFMlUsJedXJPhL9qTEyPTRWIa2VGSYJJ41SE6YtFvq4oE/pGWB9a5omiJTUbTHFmPoxD4XOL6iOaqWtX+8eNhCTM8lC5/RtHQY7wYB+jvY0OgAGMK8cbxEFuPBgGifb8nG88JUZSFftFRq2Vj0ySQrgx7tYDZ5eWxnx9EMveszxAFl6rA+u6OB/3KnKC6jjdeCmbSc164FHe+UESKxLaEr7iUYr4SY16xUm/fTeCWXjgnFebXOoW1HII50EqI8wmN+Pg7yn1cWzDJzl2UpiJ1PB2MrXmHhW0wOFa5C9evBAcTwZXe/fAGbcUO7JnVrOsnzr+lQOZyr+LgVfrES9Q8niPaYrs7yb/L0ac2NQEUgjSeKQ6/kszus7CQEJBXI4o4xeVWuVMmNiULma0Zrl1U2dlcz7rWlYRqu2AS/sAzK3O+hbffigqpdyImBCvCxQCoci0eLUhzl0Os+UKkdpOF+BCI54gFqLUfKcob/wYUha1vIS/4YFkv5YJXwr+SZalGfqYQhfRRZsIHx5v2nhfGCzbn6N8PWq4pk3N6V1Dy2KgKKEE2/woxG9V7+C9lWnxH7jBKiU7uP3WO7IhsYz3yeNQRmh9HmcZx4JTpI1f1WwOtHfZI0rWqaOY7g62/D0YEztboyw3btR7JbFUat0WJ1m01rPSPFBuhLTHGN3XD7LZ/hMe4smrjA9CJlP1vCvETsSoJY7iWNhgx7ATFLNlIVCYhqK+iwts6w73Z7Va1t9kCffud83xf1AeyB3pWDOqkQ2tJsLXTkgEv1UUicfNMo57spsSsrfKB00BWNwFB0kusT8TmTQ0mI7pPDowNaJLKFgGbCRjz5Tmz5rAeIaSo/IcXw2E8vkNFesnbAJWWCJjBfJl5iSn/4I/0oPJuXbnTUiMTjlO4XpA67IAreO5SU91u2jUCyNZEBAgJMJOtWXfm4q75bnoxDPHiaHn7Q3+TLJcZof2oiczCm0ZZYq9RUqEP5ooUsKx84miUeTXjaApIpslPWESgWRZCDjWcy3CEWBymlHYRUkJwZLoT6OogxY2UuJBTBnnNQM20EfPg49nl/1bIwuT4lgesRJm+7S0LR03vBJUB+maEadi8ATTmho225d/yb7L4YApq3ZhCspntPu3v3Lk/9739+a8WBBewF7QguLPucSq0SflBmUdiVnwyVoKnh+oV44EJxm2Ti8ubDY9mKneD4sTCow0tlM3MXqczPrHxIpVG4c8zGUliyoFVLVWsm50HrAOLWqrOFVpMpaTfBVRqrQBldlRTP1x7vuSaqs5mMgVVbzebOb2dLam3spq5OH/46iFUDlRVflR8nvbk7bywV4rgaqHUuHe/6XT7/sy7E/pk+P0BXgXoB+92Qfl0kT0X+JTdwFAuLKUUNGa8QjdV+u8agnESxFDJQPXP//Xh8Fta7hYuua5m6c1MRtueCXkpf1ddA2zV7f6na+p1D9tkjWSrDb48//xj9i5DgHqEtlL8vZXmZpvsxKca+yJ9i3if0EVBdlAKC8jbVFPql5ZyMrQtfsdgC7rM5f5th00Ua2mmyIcm5xb85qVk1lK03zkW4Vv56VEquVIozCW8b6GensGyrkRDQOg8//PgJqhmf3ZLgKhivBOq3ew4FhVabtajBsturkM/xKpu1bwLC5yRmrFn6KEjNtU45tAsOzX/GR5duSbEcwaVdsPw4mMopyK+sP3Hsv2Uu0X+4L+Q6JT8WHinORPAQhuXMQbHv/2fFwb8dIyjDYwUzSma77KOONkWre7kiCxGyMvXVrgvYrdUuSQQKWItaP5H/9fZ5TppaSWxJ2DkFtm3EX3Vq/7jPSzxvYgPFuiBEKFV+RTt1H37+6+Q2h2/5SKYy4QYqCT4tD9XWKFZkZsuxUDUW2XgoH5K36bnJO1UO3kICdayv5rreWynJI57VfggaMh7CGIghEyfFpxLgs3LsIFRRzjQ4Q5RjQ3+tKMi/lXR2Fs08L31l6viuzU7TkdrCFS8FAXMeXAOaDEoxgPkJtSn8vtLwVJdmgilBlJLkadb5MOfUoOB+amR46VyHTqR0Aj2I79PWH5PMiKi9kKUo22F7m1ypUXT4sab5z7Byes3fRaAkjAlsrVnYQhbpqEMsKzD7SlcTG5ItILqYVZWX+578glJe3Vp0prA3fbLd2fjh7a+kU8Fb6I3XvDBfSu9luV93oqBsqgufwwqJfZbkGuIPBTJG4+8xGd+nHJjxs0Gl3BsAg+g//1bKDNYcdputKiRGMi/Lmwh66LEbxrFsWbnmt+LXSFSJFtOlhiFRVbvBbiJRO7l1OpCro08ZH1B+rBI6bH043q9OAv4BdGwMr2gv4nF/lj6c/0Oe8uaq4MVcNaVjW+Ouf9E6yZfe/54z5hshFyTmxsk9hal+/pJAG/VXNUMWTKDN0kgmmRKoQdl9Jx1Fm+2JeFqhNuizAleeF7JI7UsXSrlbny40k9sDqtmFd9q32wx9tLga9YjBG7nMg5SpyxUNGVpRx5NvTufTWidiq8O4XhTe0/sGEd1Ue3luEd/urmUbw7ao8vCaK/w3E+ODlYICHln+Fb706Be8wtoVYsBPftu/qXAcRhE7pghqc+dLhWZv4/MFMeB6X+vn7yfaQWrUbUu4vKSMXxblc13dTXXHN6ntCGU7DK/jHY0OgWfhHnqmo1hX197RLBhs+Ozl4fcaeneGHDubwWwIbhZ0JiCUc7o74fM7dzfqmG7M7duXXuvXdi/4NoRRlNqMPKM1vaqDqeb5WByoEJnnk5rWCN/lSqE8ixKPMbJk/yPDWqxUSweqzEfSJJJS/gT7nkrTj/PwRaDUqXRnAo4s5cSVMjg53HOvDJnj5EuWNqhDeTPMLW/nUZ/P8D4/VGSpDlBeLUqTRwQ/WxFyuhWA6gOAb1t4x6H31kFn+kLWjvkGe5CCuBBKVOFh1Q3+rPOl+oko5y/thcRe0pn6/a2EKBNiID+/ffRLAaMSUMOfLp396isERpDLqL4rBZauu/v7y6Z8LkFx7eZEeN07ShWSvGqBgqhdX4BdasAK/D/W1R2FWpe2sgt8W6k63pO0sBd3Wpl9TMvuHHz4YlvWk2zM6rQPC7c2gtzpb53N/5rGDBtvn4uPdkLf6M0qnOrsXINev+ZDSCJqivzg0rsgP0mn1uqbZ6619QWkPpjLkbNhgB5hd+249eukvfYejc3bp+jE8kNcNX/oh2/Omgs7G5Xu7Sdf4GFu167ilhxYGZrfV7nVbvV5vtV9vghAD8AIhRwWGlHcZP5awFCnE8JW4Yn/A0JXcXIH82hvF7PGMj2RqPwe9ecSeuBINhfc82hoHIR5tVS3anfr+1BFVWVLTjgHTXunYYwCjJRtGGJ1eTNa6Gj6J+TboQ6Glp5aLq3IPtC1OC3G4Z7C9GOHRuS9HsgEihdMIk7btcl0qfVWUr0+f1YW/QJz2/j+5xIXCi1LG9CS993+YMamU6ZSPLP9tJDRrM+gcxhjC3sGzBMrQ+nVURLIEG2Ny/VUsavYalwPSBNvs5vqP5+cRDJyMrtNv2BwlhgKMBWkAk/pRPTOaXA+yX4F7vY2FAbkxm+aXT7+Yrc7Nz3jg9Ej1jQ4JY6I2sijgsZEgoKzpMx84jurlHXjKz5UL8QaRaQp/vSY2RbEBMQ097PXG1s3/APMou+k="
+            }
+          },
+          "metadata": {
+            "collection_url": "https://link.intlpress.com/api/bgcloud-front/periodical/detail?id=1804415065855684610",
+            "issue_url": "https://link.intlpress.com/api/bgcloud-front/periodical/issue-content-list?periodicalId=1804415065855684610&issueId=1805134486872403970"
+          },
+          "output": [
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "We give a new, elegant description of the Tate duality pairing as a Brauer–Manin pairing for associated embedding problems and prove a new theorem on the cup product.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Ambrus Pál"
+                },
+                {
+                  "role": "author",
+                  "string_name": "Tomer M. Schlank"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2023.v25.n2.a1",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805805437884710914",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "cup product"
+                },
+                {
+                  "lang": "en",
+                  "value": "embedding problem"
+                },
+                {
+                  "lang": "en",
+                  "value": "Brauer–Manin pairing"
+                },
+                {
+                  "lang": "en",
+                  "value": "11R34,55N10"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2023_25_2_a0",
+              "streams": [],
+              "title_tex": "Two theorems on cohomological pairings",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "The self-closeness number of a connected CW complex is the least integer $n$ such that any of its self-maps inducing an isomorphism in $\\pi_\\ast$ for $\\ast \\leqslant n$ is a homotopy equivalence. We prove that under a mild condition, the self-closeness number of a non-simply-connected finite complex coincides with that of its universal cover whenever the universal cover is a finite $\\mathrm{H}_0$-space or a finite co-$\\mathrm{H}_0$-space. We give several interesting examples to which the result applies.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Yichen Tong"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2023.v25.n2.a2",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805805441001078786",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "self-closeness number"
+                },
+                {
+                  "lang": "en",
+                  "value": "group of self-equivalences"
+                },
+                {
+                  "lang": "en",
+                  "value": "$\\mathrm{H}_0$-space"
+                },
+                {
+                  "lang": "en",
+                  "value": "co-$\\mathrm{H}_0$-space"
+                },
+                {
+                  "lang": "en",
+                  "value": "$p$-universal space"
+                },
+                {
+                  "lang": "en",
+                  "value": "55P10,55S37"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2023_25_2_a1",
+              "streams": [],
+              "title_tex": "Self-closeness numbers of non-simply-connected spaces",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "For a finite group $G$, we define the $G$-cobordism category in dimension two. We show there is a one-to-one correspondence between the connected components of its classifying space and the abelianization of $G$. Also, we find an isomorphism of its fundamental group onto the direct sum $\\mathbb{Z} \\oplus \\Omega^{SO}_{2} (BG)$, where $\\Omega^{SO}_{2} (BG)$ is the free oriented $G$-bordism group in dimension two, and we study the classifying space of some important subcategories. We obtain the classifying space has the homotopy type of the product $G/[G,G] \\times S^1 \\times X^G$, where $\\pi_1 (X^G) = \\Omega^{SO}_{2} (BG)$. Finally, we present some results about the classification of $G$-topological quantum field theories in dimension two.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Carlos Segovia"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2023.v25.n2.a3",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805805444125835265",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "cobordism category"
+                },
+                {
+                  "lang": "en",
+                  "value": "classifying space"
+                },
+                {
+                  "lang": "en",
+                  "value": "$G$-cobordism"
+                },
+                {
+                  "lang": "en",
+                  "value": "55P91,57R85"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2023_25_2_a2",
+              "streams": [],
+              "title_tex": "The classifying space of the 1+1 dimensional $G$-cobordism category",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "$\\def\\Emb{\\overline{Emb}}$We show that for the spaces of spherical embeddings modulo immersions $\\Emb (S^n, S^{n+q})$ and long embeddings modulo immersions $\\Emb_\\partial (D^n, D^{n+q})$, the set of connected components is isomorphic to $\\pi_{n+1} (SG, SG_q)$ for $q \\geqslant 3$. As a consequence, we show that all the terms of the long exact sequence of the triad $(SG; SO, SG_q)$ have a geometric meaning relating to spherical embeddings and immersions.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Neeti Gauniyal"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2023.v25.n2.a4",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805805447560970242",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "embeddings modulo immersions"
+                },
+                {
+                  "lang": "en",
+                  "value": "spherical embedding"
+                },
+                {
+                  "lang": "en",
+                  "value": "framed disked embedding"
+                },
+                {
+                  "lang": "en",
+                  "value": "57R40,57R42,58D10"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2023_25_2_a3",
+              "streams": [],
+              "title_tex": "Haefliger’s approach for spherical knots modulo immersions",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "$\\def\\F{\\mathbb{F}} \\def\\O{\\mathbb{O}} \\def\\R{\\mathbb{R}} \\def\\C{\\mathbb{C}} \\def\\H{\\mathbb{H}}$We analyse the homotopy solvability of the classical Lie groups $O(n)$, $U(n)$, $Sp(n)$ and derive its heredity by closed subgroups. In particular, the homotopy solvability of compact Lie groups is shown.\nThen, we study the homotopy solvability of the loop spaces $\\Omega (G_{n,m} (\\F))$, $\\Omega (V_{n,m} (\\F))$ and $\\Omega (F_{n; n_1,\\dotsc,n_k}(\\F))$ for Grassmann $G_{n,m} (\\F)$, Stiefel $V_{n,m} (\\F)$ and generalised flag $F_{n; n_1,\\dotsc,n_k}(\\F)$ manifolds for $\\F = \\R, \\C$, the field of reals or complex numbers and $\\H$, the skew $\\R$-algebra of quaternions. Furthermore, the homotopy solvability of the loop space $\\Omega (\\O P^2)$ for the Cayley plane $\\O P^2$ is established as well.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Marek Golasiński"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2023.v25.n2.a5",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805805451327455234",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "Cayley plane"
+                },
+                {
+                  "lang": "en",
+                  "value": "Grassmann (generalised flag and Stiefel) manifold"
+                },
+                {
+                  "lang": "en",
+                  "value": "$H$-space"
+                },
+                {
+                  "lang": "en",
+                  "value": "localization"
+                },
+                {
+                  "lang": "en",
+                  "value": "$n$-fold commutator map"
+                },
+                {
+                  "lang": "en",
+                  "value": "nilpotent space"
+                },
+                {
+                  "lang": "en",
+                  "value": "nilpotency (solvability) class"
+                },
+                {
+                  "lang": "en",
+                  "value": "loop space"
+                },
+                {
+                  "lang": "en",
+                  "value": "Postnikov system"
+                },
+                {
+                  "lang": "en",
+                  "value": "Samelson product"
+                },
+                {
+                  "lang": "en",
+                  "value": "smash product"
+                },
+                {
+                  "lang": "en",
+                  "value": "suspension space"
+                },
+                {
+                  "lang": "en",
+                  "value": "wedge sum"
+                },
+                {
+                  "lang": "en",
+                  "value": "Whitehead product"
+                },
+                {
+                  "lang": "en",
+                  "value": "55P15,14M17,22C05,55P45,55R35"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2023_25_2_a4",
+              "streams": [],
+              "title_tex": "The homotopy solvability of compact Lie groups and homogenous topological spaces",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "In this paper we show that the functor sending a stratified topological space $S$ to the $\\infty$-category of constructible (hyper)sheaves on $S$ with coefficients in a large class of presentable $\\infty$-categories is homotopy-invariant. To do this, we first establish a number of results for locally constant (hyper)sheaves. For example, if $X$ is a locally weakly contractible topological space and $\\mathcal{E}$ is a presentable $\\infty$-category, then we give a concrete formula for the constant hypersheaf functor $\\mathcal{E} \\to \\mathrm{Sh}^\\mathrm{hyp} (X; \\mathcal{E})$, implying that the constant hypersheaf functor is a right adjoint, and is fully faithful if $X$ is also weakly contractible. It also lets us prove a general monodromy equivalence and categorical Künneth formula for locally constant hypersheaves.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Peter J. Haine"
+                },
+                {
+                  "role": "author",
+                  "string_name": "Mauro Porta"
+                },
+                {
+                  "role": "author",
+                  "string_name": "Jean-Baptiste Teyssier"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2023.v25.n2.a6",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805805454578040834",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "locally constant sheaf"
+                },
+                {
+                  "lang": "en",
+                  "value": "constructible sheaf"
+                },
+                {
+                  "lang": "en",
+                  "value": "hypersheaf"
+                },
+                {
+                  "lang": "en",
+                  "value": "homotopy-invariance"
+                },
+                {
+                  "lang": "en",
+                  "value": "32S60,55N05,55N30,55P55"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2023_25_2_a5",
+              "streams": [],
+              "title_tex": "The homotopy-invariance of constructible sheaves",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "We consider the space $\\Lambda M := H^1 (S^1, M)$ of loops of Sobolev class $H^1$ of a compact smooth manifold $M$, the so-called free loop space of $M$. We take quotients $\\Lambda M / G$ where $G$ is a finite subgroup of $O(2)$ acting by linear reparametrization of $S^1$. We use the existence of transfer maps $\\operatorname{tr} : H_\\ast (\\Lambda M / G) \\to H_\\ast (\\Lambda M)$ to define a homology product on $\\Lambda M / G$ via the Chas–Sullivan loop product. We call this product $P_G$ the transfer product. The involution $\\vartheta : \\Lambda M \\to \\Lambda M$ which reverses orientation, $\\vartheta ( \\gamma (t) := \\gamma (1-t)$, is of particular interest to us. We compute $H_\\ast (\\Lambda S^n / \\vartheta ; \\mathbb{Q}), n \\gt 2$, and the product\\[P_\\vartheta : H_i (\\Lambda S^n / \\vartheta ; \\mathbb{Q}) \\times H_j (\\Lambda S^n / \\vartheta ; \\mathbb{Q)} \\to H_{i+j-n} (\\Lambda Sn/\\vartheta ; \\mathbb{Q})\\]associated to orientation reversal. Rationally P\\vartheta can be realized “geometrically” using the concatenation of equivalence classes of loops. There is a qualitative difference between the homology of $\\Lambda S^n / \\vartheta$ and the homology of $\\Lambda S^n / G$ when $G \\subset S^1 \\subset O(2)$ does not “contain” the orientation reversal. This might be interesting with respect to possible differences in the number of closed geodesics between non-reversible and reversible Finsler metrics on $S^n$, the latter might always be infinite.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Philippe Kupper"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2023.v25.n2.a7",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805805458218696705",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "loop space homology"
+                },
+                {
+                  "lang": "en",
+                  "value": "transfer for a finite group action"
+                },
+                {
+                  "lang": "en",
+                  "value": "homotopy"
+                },
+                {
+                  "lang": "en",
+                  "value": "55P50,55R12,58E05"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2023_25_2_a6",
+              "streams": [],
+              "title_tex": "Homology transfer products on free loop spaces: orientation reversal on spheres",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "Let $e_n$ be the connective cover of the Morava $E$-theory spectrum $E_n$ of height $n$. In this paper we compute its homology $H_\\ast (e_n; \\mathbb{F}_p)$ for any prime $p$ and $n \\leqslant 4$ up to possible multiplicative extensions. In order to accomplish this we show that the Künneth spectral sequence based on an $\\mathbb{E}_3$-algebra $R$ is multiplicative when the $R$-modules in question are commutative Salgebras. We then apply this result by working over $BP$ which is known to be an $\\mathbb{E}_4$-algebra.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Lukas Kattän"
+                },
+                {
+                  "role": "author",
+                  "string_name": "Sean Tilson"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2023.v25.n2.a8",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805805461607694338",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "highly structured ring spectra"
+                },
+                {
+                  "lang": "en",
+                  "value": "Künneth spectral sequence"
+                },
+                {
+                  "lang": "en",
+                  "value": "Morava $E$-theory"
+                },
+                {
+                  "lang": "en",
+                  "value": "55P43,55T15,55N20"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2023_25_2_a7",
+              "streams": [],
+              "title_tex": "The homology of connective Morava $E$-theory with coefficients in $\\mathbb{F}_p$",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "We generalize Bousfield–Friedlander’s Theorem and Hirschhorn’s Localization Theorem to settings where the hypotheses are not satisfied at the expense of obtaining semi-model categories instead of model categories. We use such results to answer, in the world of semi-model categories, an open problem posed by May–Ponto about the existence of Bousfield localizations for Hurewicz and mixed type model structures (on spaces and chain complexes). We also provide new applications that were not available before, e.g. stabilization of non-cofibrantly generated model structures or applications to mathematical physics.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Victor Carmona"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2023.v25.n2.a9",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805805465424510977",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "Bousfield localization"
+                },
+                {
+                  "lang": "en",
+                  "value": "idempotent functor"
+                },
+                {
+                  "lang": "en",
+                  "value": "model category"
+                },
+                {
+                  "lang": "en",
+                  "value": "Hurewicz and mixed model structures"
+                },
+                {
+                  "lang": "en",
+                  "value": "stable model category"
+                },
+                {
+                  "lang": "en",
+                  "value": "homological algebra"
+                },
+                {
+                  "lang": "en",
+                  "value": "18G30,18G55,55U35"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2023_25_2_a8",
+              "streams": [],
+              "title_tex": "When Bousfield localizations and homotopy idempotent functors meet again",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "This paper establishes several results for coalgebraic structure in $\\infty$-categories, specifically with connections to the spectral noncommutative geometry of cobordism theories. We prove that the categories of comodules and modules over a bialgebra always admit suitably structured monoidal structures in which the tensor product is taken in the ambient category (as opposed to a relative (co)tensor product over the underlying algebra or coalgebra of the bialgebra). We give two examples of higher coalgebraic structure: first, following Hess we show that for a map of $\\mathbb{E}_n$-ring spectra $\\varphi : A \\to B$, the associated $\\infty$-category of descent data is equivalent to the $\\infty$-category of comodules over $B \\otimes_A B$, the so-called descent coring; secondly, we show that Thom spectra are canonically equipped with a highly structured comodule structure which is equivalent to the $\\infty$-categorical Thom diagonal of Ando, Blumberg, Gepner, Hopkins and Rezk (which we describe explicitly) and that this highly structured diagonal decomposes the Thom isomorphism for an oriented Thom spectrum in the expected way indicating that Thom spectra are good examples of spectral noncommutative torsors.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Jonathan Beardsley"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2023.v25.n2.a10",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805805469077749761",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "Thom spectrum"
+                },
+                {
+                  "lang": "en",
+                  "value": "infinity category"
+                },
+                {
+                  "lang": "en",
+                  "value": "coalgebra"
+                },
+                {
+                  "lang": "en",
+                  "value": "bialgebra"
+                },
+                {
+                  "lang": "en",
+                  "value": "16T10,18F20,55N22,55P43"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2023_25_2_a9",
+              "streams": [],
+              "title_tex": "On bialgebras, comodules, descent data and Thom spectra in $\\infty$-categories",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "Persistence modules have a natural home in the setting of stratified spaces and constructible cosheaves. In this article, we first give explicit constructible cosheaves for common data-motivated persistence modules, namely, for modules that arise from zig‑zag filtrations (including monotone filtrations), and for augmented persistence modules (which encode the data of instantaneous events). We then identify an equivalence of categories between a particular notion of zig‑zag modules and the combinatorial entrance path category on stratified $\\mathbb{R}$. Finally, we compute the algebraic $K$-theory of generalized zig‑zag modules and describe connections to both Euler curves and $K_0$ of the monoid of persistence diagrams as described by Bubenik and Elchesen.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Ryan Grady"
+                },
+                {
+                  "role": "author",
+                  "string_name": "Anna Schenfisch"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2023.v25.n2.a11",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805805472462553090",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "persistence module"
+                },
+                {
+                  "lang": "en",
+                  "value": "zig-zag persistence"
+                },
+                {
+                  "lang": "en",
+                  "value": "cosheaf"
+                },
+                {
+                  "lang": "en",
+                  "value": "algebraic $K$-theory"
+                },
+                {
+                  "lang": "en",
+                  "value": "18F25,19M05,32S60"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2023_25_2_a10",
+              "streams": [],
+              "title_tex": "Zig-zag modules: cosheaves and $k$-theory",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "We show a Gottlieb element in the rational homotopy of a simply connected space $X$ implies a structural result for the Sullivan minimal model, with different results depending on parity. In the even-degree case, we prove a rational Gottlieb element is a terminal homotopy element. This fact allows us to complete an argument of Dupont to prove an even-degree Gottlieb element gives a free factor in the rational cohomology of a formal space of finite type. We apply the odd-degree result to affirm a special case of the $2N$-conjecture on Gottlieb elements of a finite complex. We combine our results to make a contribution to the realization problem for the classifying space $\\operatorname{\\mathit{B}aut}_1 (X)$. We prove a simply connected space $X$ satisfying $\\operatorname{\\mathit{B}aut}_1 (X_\\mathbb{Q}) \\simeq S^{2n}_\\mathbb{Q}$ must have infinite-dimensional rational homotopy and vanishing rational Gottlieb elements above degree $2n-1$ for $n=1,2,3$.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Gregory Lupton"
+                },
+                {
+                  "role": "author",
+                  "string_name": "Samuel Bruce Smith"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2023.v25.n2.a12",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805805476673634306",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "Gottlieb element"
+                },
+                {
+                  "lang": "en",
+                  "value": "Sullivan minimal model"
+                },
+                {
+                  "lang": "en",
+                  "value": "classifying space for a fibration"
+                },
+                {
+                  "lang": "en",
+                  "value": "derivation"
+                },
+                {
+                  "lang": "en",
+                  "value": "55P62,55R35,55R15"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2023_25_2_a11",
+              "streams": [],
+              "title_tex": "The structuring effect of a Gottlieb element on the Sullivan model of a space",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "We introduce lifespan functors, which are endofunctors on the category of persistence modules that filter out intervals from barcodes according to their boundedness properties. They can be used to classify injective and projective objects in the category of barcodes and the category of pointwise finite-dimensional persistence modules. They also naturally appear in duality results for absolute and relative versions of persistent (co)homology, generalizing previous results in terms of barcodes. Due to their functoriality, we can apply these results to morphisms in persistent homology that are induced by morphisms between filtrations. This lays the groundwork for the efficient computation of barcodes for images, kernels, and co-kernels of such morphisms.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Ulrich Bauer"
+                },
+                {
+                  "role": "author",
+                  "string_name": "Maximilian Schmahl"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2023.v25.n2.a13",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805805480104574977",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "barcode"
+                },
+                {
+                  "lang": "en",
+                  "value": "persistent homology"
+                },
+                {
+                  "lang": "en",
+                  "value": "duality"
+                },
+                {
+                  "lang": "en",
+                  "value": "injectivity"
+                },
+                {
+                  "lang": "en",
+                  "value": "projectivity"
+                },
+                {
+                  "lang": "en",
+                  "value": "16G20,18G05,55U10,57N15"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2023_25_2_a12",
+              "streams": [],
+              "title_tex": "Lifespan functors and natural dualities in persistent homology",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "We prove that the Díaz–Park sharpness conjecture holds for saturated fusion systems defined on a Sylow $p$-subgroup of the group $\\mathrm{G}_2 (p)$, for $p \\geqslant 5$.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Valentina Grazian"
+                },
+                {
+                  "role": "author",
+                  "string_name": "Ettore Marmo"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2023.v25.n2.a14",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805805483300634626",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "sharpness"
+                },
+                {
+                  "lang": "en",
+                  "value": "homology decomposition"
+                },
+                {
+                  "lang": "en",
+                  "value": "classifying space"
+                },
+                {
+                  "lang": "en",
+                  "value": "fusion system"
+                },
+                {
+                  "lang": "en",
+                  "value": "Mackey functor"
+                },
+                {
+                  "lang": "en",
+                  "value": "20D20,20J06,55R35,55R40"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2023_25_2_a13",
+              "streams": [],
+              "title_tex": "Sharpness of saturated fusion systems on a Sylow $p$-subgroup of $\\mathrm{G}_2 (p)$",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "By applying Gröbner basis theory to spectral sequences algebras, we develop a new computational methodology applicable to any Leray–Serre spectral sequence for which the cohomology of the base space is the quotient of a finitely generated polynomial algebra. We demonstrate the procedure by deducing the cohomology of the free loop space of flag manifolds, presenting a significant extension over previous knowledge of the topology of free loop spaces. A complete flag manifold is the quotient of a Lie group by its maximal torus. The rank of a flag manifold is the dimension of the maximal torus of the Lie group. The rank $2$ complete flag manifolds are $SU(3)/T^2$, $Sp(2)/T^2$, $\\mathit{Spin}(4)/T^2$, $\\mathit{Spin}(5)/T^2$ and $G_2/T^2$. In this paper we calculate the cohomology of the free loop space of the rank $2$ complete flag manifolds.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Matthew Burfitt"
+                },
+                {
+                  "role": "author",
+                  "string_name": "Jelena Grbić"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2023.v25.n2.a15",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805805486165344258",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "cohomology"
+                },
+                {
+                  "lang": "en",
+                  "value": "free loop space"
+                },
+                {
+                  "lang": "en",
+                  "value": "flag manifold"
+                },
+                {
+                  "lang": "en",
+                  "value": "spectral sequence"
+                },
+                {
+                  "lang": "en",
+                  "value": "homotopy theory"
+                },
+                {
+                  "lang": "en",
+                  "value": "Gröbner basis"
+                },
+                {
+                  "lang": "en",
+                  "value": "13P10,14M15,55P35,55T10"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2023_25_2_a14",
+              "streams": [],
+              "title_tex": "The cohomology of free loop spaces of rank $2$ flag manifolds",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "We prove that the classifying space of a simplicial group is modeled by its homotopy coherent nerve. We will also show that the claim remains valid for simplicial groupoids.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Kensuke Arakawa"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2023.v25.n2.a16",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805805489545953282",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "classifying space"
+                },
+                {
+                  "lang": "en",
+                  "value": " homotopy coherent nerve"
+                },
+                {
+                  "lang": "en",
+                  "value": "18D50,55R35"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2023_25_2_a15",
+              "streams": [],
+              "title_tex": "Classifying space via homotopy coherent nerve",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "Let $G_{n,k}$ denote the real Grassmann manifold of $k$-dimensional vector subspaces of $\\mathbb{R}^n$. We compute the complex $K$-ring of $G_{n,k}\\:$, up to a small indeterminacy, for all values of $n,k$ where $2 \\leqslant k \\leqslant n - 2$. When $n \\equiv 0 (\\operatorname{mod} 4), k \\equiv 1 (\\operatorname{mod} 2)$, we use the Hodgkin spectral sequence to determine the $K$-ring completely.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "Sudeep Podder"
+                },
+                {
+                  "role": "author",
+                  "string_name": "Parameswaran Sankaran"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2023.v25.n2.a17",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1805805492649738241",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "real Grassmann manifold"
+                },
+                {
+                  "lang": "en",
+                  "value": "$K$-theory"
+                },
+                {
+                  "lang": "en",
+                  "value": "Hodgkin spectral sequence"
+                },
+                {
+                  "lang": "en",
+                  "value": "19L99,55N15"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2023_25_2_a16",
+              "streams": [],
+              "title_tex": "$K$-theory of real Grassmann manifolds",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            },
+            {
+              "abstracts": [
+                {
+                  "lang": "en",
+                  "tag": "abstract",
+                  "value_tex": "There were a number of sign errors in our paper “From loop groups to 2-groups” $\\href{https://dx.doi.org/10.4310/HHA.2007.v9.n2.a4 }{[\\textit{Homology Homotopy Appl.}\\;\\textbf{9}\\;\\textrm{(2007), 101–135}]}$. Here we explain how to correct those errors.\n"
+                }
+              ],
+              "bibitems": [],
+              "contributors": [
+                {
+                  "role": "author",
+                  "string_name": "John C. Baez"
+                },
+                {
+                  "role": "author",
+                  "string_name": "Alissa S. Crans"
+                },
+                {
+                  "role": "author",
+                  "string_name": "Urs Schreiber"
+                },
+                {
+                  "role": "author",
+                  "string_name": "Danny Stevenson"
+                }
+              ],
+              "date_published_iso_8601_date_str": null,
+              "doi": "10.4310/HHA.2023.v25.n2.e18",
+              "ext_links": [
+                {
+                  "location": "https://link.intlpress.com/JDetail/1806595886291513346",
+                  "rel": "source"
+                }
+              ],
+              "ids": [],
+              "kwds": [
+                {
+                  "lang": "en",
+                  "value": "$L_\\infty$-algebra"
+                },
+                {
+                  "lang": "en",
+                  "value": "loop group"
+                },
+                {
+                  "lang": "en",
+                  "value": "$2$-group"
+                },
+                {
+                  "lang": "en",
+                  "value": "18Gxx,22E67,53C08"
+                }
+              ],
+              "lang": "en",
+              "pid": "HHA_2023_25_2_a17",
+              "streams": [],
+              "title_tex": "Erratum to “From loop groups to 2-groups”",
+              "trans_title_html": "",
+              "trans_title_tex": "",
+              "translations": [],
+              "url": null
+            }
+          ]
+        }
+      }
+    }
+  }
+}
\ No newline at end of file
diff --git a/src/crawler/tests/fixtures.py b/src/crawler/tests/fixtures.py
index 29d8a16eb78033da231b3f74a97761bf6bac1724..a03076136e217a7e26825d0494cba215172bfd34 100644
--- a/src/crawler/tests/fixtures.py
+++ b/src/crawler/tests/fixtures.py
@@ -20,6 +20,7 @@ from crawler.by_source.ems_crawler import EmsCrawler
 from crawler.by_source.eudml_crawler import EudmlCrawler
 from crawler.by_source.hdml_crawler import HdmlCrawler
 from crawler.by_source.impan_crawler import ImpanCrawler
+from crawler.by_source.ipb_crawler import IpbCrawler
 from crawler.by_source.isrp_crawler import IsrpCrawler
 from crawler.by_source.lofpl_crawler import LofplCrawler
 from crawler.by_source.mathbas_crawler import MathbasCrawler
@@ -51,6 +52,7 @@ crawlers_to_test: list[type[BaseCollectionCrawler]] = [
     EmsCrawler,
     EudmlCrawler,
     HdmlCrawler,
+    IpbCrawler,
     ImpanCrawler,
     IsrpCrawler,
     LofplCrawler,