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Abstract 

The aim of this paper is to clarify the meaning of the mechanical state variables stress and strain in the case of 
random granular assemblies. Stress and strain are expressed in terms of local, micro-level variables with the help of two 
complementary geometrical systems. The two expressions show a strong duality which is also analysed in the paper. 
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1. Introduct ion 

The aim of this paper is to re-define the continuum- 
mechanical state variables stress and strain for a 
granular assembly, i.e. a material consisting of sep- 
arate particles and having a characteristic discrete 
microstructure that changes under external loading. 

We shall focus our attention on the quasi-static be- 
havior of the material; so time effects will not be con- 
sidered at all, and any part of the assembly is assumed 
to be in equilibrium. The results will be valid for 2D 
and 3D as well. The assembly consists of randomly 
packed separate grains having arbitrary convex shape. 
Contacting grains have discrete contact points trans- 
mitting concentrated contact forces. External forces 
act on the assembly through the contact points with its 
neighbourhood. For simplicity, body forces and body 
moments will not be considered here (however, their 
effect could also be included in the concepts to be dis- 
cussed). 

The final goal of  the mechanics of granular ma- 
terials is to provide relationships between the exter- 
nal loads acting on the material and the resulting dis- 
placements. Traditionally, the effect of external loads 

is expressed by the continuum-mechanical state vari- 
able stress (the relation between loads and the stress 
field is given by the equilibrium equations of contin- 
uum mechanics, for example the Cauchy equations in 
the simplest case); deformations are reflected by the 
other continuum-mechanical state variable strain (ge- 
ometrical equations set the link between displacements 
and the strain field). Stress and strain are related to 
each other through the constitutive equations (which 
are expected to contain all the necessary information 
about the mechanical characteristics of  the material). 
The geometrical and equilibrium equations are clear 
in continuum mechanics; but to find the proper consti- 
tutive equations for granular assemblies is not simple 
at all: for many years, a large number of  theoretical 
and experimental studies have been concerned with 
the problem, and the results seem to be rather limited. 

Recently there are two approaches that most of the 
researchers follow in order to solve this problem. Let 
us call the first one the continuum-mechanical, and the 
second one the microstructural approach. 

The idea of the continuum-mechanical approach is 
to consider the assembly as a continuous domain, ac- 
cept the concept of an infinitesimally small represen- 
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tative volume element, and apply stress and strain as 
the fundamental variables that uniquely determine the 
state of the material in any point. Constitutive rela- 
tions are searched for in such a way that they would 
not violate the fundamental laws of physics; and the 
parameters in the equations, expressing the specific 
properties of the material, are measured experimen- 
tally. This empirical method is the one used today for 
practical engineering problems. 

The problem with this is the limited validity of the 
results. Experimentally determined relations easily be- 
come unreliable if the circumstances for which we 
want to apply them differ even slightly from those that 
existed during the experiments. (To improve the con- 
stitutive equations, either the mathematical form of 
the equations must be made more complicated by in- 
creasing the number of parameters; or additional state 
variables are introduced beside the traditional stress 
and strain.) 

The microstructural approach is a relatively new 
method, and - in the long run - it may be an advan- 
tageous alternative to the previous one. 

The aim of the microstructural approach is to find 
macro-level state variables that are based on micro- 
variables such as contact forces, grain displacements, 
and local geometrical characteristics. Since it would 
reflect those characteristics of the material that are 
most significant in determining the macro-behavior, 
and the relationships between its state variables would 
be strongly connected to the phenomena taking place 
in the microstructure, a microstructural theory is ex- 
pected to be far more reliable and general than the 
existing continuum-mechanical models. 

Microstructural studies are rather diverse today and 
the scientists working in this field do not agree even on 
the most fundamental questions. Different approaches 
to the two most important problems will shortly be 
summarized below. 

1.1. The geometrical modelling of granular 
assemblies 

The geometrical representation has, in many re- 
spects, always been a central problem in the mi- 
crostructural approach. A summary will be given 
below; first on the different basic geometrical units 
suggested for the theoretical description; then on 
the best-known mathematical representations applied 

for modelling whole systems of grains. Finally, a 
short introduction will be given on two concepts that 
strongly inspired our efforts to work out the idea of 
introducing two complementary cell systems for the 
micromechanical analysis of granular assemblies. 

So we will start with the various basic units used 
for the description in a geometrical representation. 

Several early experiments concentrated on the 
analysis of micro-level geometrical characteristics 
and their changes under loads (see, e.g., Oda, 1972; 
Drescher and de Josselin de Jong, 1972, and others). 
The simplest unit of the description was the contact 
between two grains. It might be said that the orien- 
tation of contact normals was considered as the most 
important geometrical characteristic of the internal 
structure (the different fabric tensors, see Section 1.2, 
were defined to describe the orientational distribu- 
tion). Branch vectors (vectors connecting the centres 
of neighbouring grains) also appeared in several the- 
ories (they had an important role in stress definitions 
for example, as seen in Section 1.2). 

An other possible unit of the analysis is the individ- 
ual grain itself. Misra (1993), for instance, suggests 
a theory in which a stress tensor and a strain tensor is 
assigned to each grain (more exactly, to a polygonal 
domain surrounding the grain), and an approximation 
of the global behavior is gained through homogeniza- 
tion; this approach arises in other papers too. However, 
our opinion is that the geometrical characteristics of 
a grain, even together with its contact points, cannot 
properly reflect the geometrical buildup of the internal 
structure, so this unit seems to be insufficient in itself. 

A more complex unit was suggested by Chang 
(1983), called micro-element. A micro-element con- 
sists of a grain and its nearest neighbours (so this unit 
can be considered as the composition of the previous 
two). This unit is "powerful" in the sense that it is 
able to reflect geometrical and topological relations 
between grains, so it seems to be a very promising 
basis for building up constitutive theories. 

Now turn the attention to the well-known geomet- 
ric systems that are often used for modelling whole 
assemblies. 

The widely-used Voronoi tessalation can be applied 
in several ways. In the simplest case it is defined for a 
set of discrete points given in the 2D or 3D Euclidean 
space. In the 2D problem the plane is subdivided into 
polygonal domains, each of them containing exactly 
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one point. The edges of the domains are the bisect- 
ing lines of those straight segments that connect the 
neighbouring points. (In 3D the system is similar: the 
faces of polyhedral domains are given by the bisecting 
ptanes between neighbouring points.) 

Its generalized version can be applied for mono- 
size assemblies of circular or spherical grains. For 2D 
assemblies of equal circles the plane can be divided 
into polygons whose edges are the bisecting lines of 
straight segments joining the centres of neighbouring 
grains. (The same can be done for 3D too.) A cell 
system ("Voronoi cells") results in such a way that 
there is exactly one grain in each cell. This system is 
especially suitable for the analysis of regular assem- 
blies (see, e.g., Chang et al., 1989). 

Dirichlet tessalation, the next system we shall in- 
troduce here, has the main advantage over the Voronoi 
tessalation in that the grains do not necessarily have 
the same size. Consider a set of non-intersecting circu- 
lar grains in 2D, or non-intersecting spherical grains in 
3D. A domain can be assigned to each grain, consist- 
ing of those points which have a shorter or equal tan- 
gent to that grain than to any other grain. The common 
faces of the domains are the power lines (power planes 
in 3D) of neighbouring grains. (It may be worth- 
while to mention that in case of monosize assemblies 
the Dirichlet and Voronoi tessalations are equivalent.) 
A similar tessalation was suggested by Gellatly and 
Finney (1982), and applied by Annic et al. (1993) 
instead of the Voronoi cells, for the characterization of 
assemblies having circular grains with different sizes. 

The Dirichlet tessalation, in principle, could be gen- 
eralized for particles with arbitrary smooth convex 
shape, but as far as we know the problem was solved 
and construction algorithms were found only for grains 
and assemblies having very special regular geometry. 

The Delaunay network can also be a useful tool in 
characterizing granular systems. Consider an assembly 
of circular or spherical grains; if the Dirichlet cells of 
two grains have a common side, connect the two grain 
centres by a straight line. These connecting lines form 
the Delaunay network of the assembly. 

The definition can be modified to give a more phys- 
ical meaning to the network if the centres of grains 
being in contact are connected. In this version the 
branches in the network correspond to the internal sup- 
ports in the microstructure. However, the duality with 
the Dirichlet tessalation does not necessarily hold in 

this case. 
(An interesting idea was given in Ostoja-Starzewski 

and Wang (1989) by the joint application of Voronoi 
tessalation and Delaunay network in the case when 
the circles degenerate into points, and the two systems 
show a direct duality. A structural mechanical method 
provided estimations on the global behavior in such a 
way that the branches in the Delaunay network were 
considered as linearly elastic two-force springs; these 
may correspond to contacts in a granular assembly, for 
example.) 

In Section 2 of the present paper two new geomet- 
rical systems will be introduced as alternatives to the 
previous ones. They will be defined for assemblies 
of grains having arbitrary convex shape; and there 
will be a clear duality between them. Our opinion is 
that these advantages make the suggested cell systems 
more powerful for the modelling of granular assem- 
blies than the presently applied Voronoi, Dirichlet and 
Delaunay systems. 

Finally, two concepts will be introduced that are of a 
very different nature, but both based on the application 
of two systems dual to each other. 

The first one was suggested by Tonti in 1976. He 
was searching for the reason of the common experi- 
ence that physical theories having very different mean- 
ing show close analogies in the mathematical buildup 
of their basic equations. It was shown in his splen- 
did paper (Tonti, 1976) that the differential operators 
used in the mathematical equations correspond to a 
so-called coboundary process executed on two com- 
plementary cell systems and this fact leads to conclu- 
sions that give the explanation for the existence of the 
analogies. The two systems can be introduced as fol- 
lows. 

To define the primal cell system, consider the anal- 
ysed region/2 of the n-dimensional Euclidean space 
(for simplicity, this summary will be restricted to 
n = 3 only, though the considerations are valid for 
smaller or larger n too). Subdivide 12 into small three- 
dimensional cells whose faces are formed by the co- 
ordinate surfaces of a co-ordinate system x l, x 2, x3; 
these will be called 3-cells. Every 3-cell is composed 
of faces, edges and vertices that will be considered 
as 2-cells, I-cells and 0-cells. To construct the dual 
cell system, consider the centres of the 3-cells; they 
become the vertices (0-cells) in the dual cell system 
that is built upon the dual vertices in the same way as 
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seen above. Obviously, for every p-cell of the primal 
system there corresponds a (n - p)-cell of the dual 
system, and vice versa. 

The other concept was introduced by Satake ( 1976, 
1993, 1994). In his ingenious graph-theoretical ap- 
proach two complementary graphs (particle- and void- 
graph) are applied for the topological characterization 
of 2D random assemblies. The nodes in the particle 
graph correspond to loops in the void graph (repre- 
senting the grains); branches of the two graphs cor- 
respond to each other (they represent the contacts); 
loops in the particle-graph correspond to nodes in the 
void-graph (voids). The topological structure of the 
graphs is expressed by two topological matrices. The 
equilibrium and compatibility equations are compiled 
with the help of  these matrices; and it was found by 
Satake that the topological matrices here have the same 
role as the Schaefer operators in generalized contin- 
uum mechanics (Schaefer, 1967). (The correspon- 
dence between the topological matrices and Schaefer 
operators can be understood with the help of Tonti's 
results. Tonti's concept includes that the differential 
operators of continuum mechanics show an analogy 
with the coboundary processes. Indeed, the topolog- 
ical matrices of  Satake could be considered as oper- 
ators prescribing some kind of "boundary processes" 
in random granular assemblies.) 

1.2. Macro-level state variables 

The mechanical state of the assembly and its state- 
changing can exactly be described and predicted if the 
following characteristics are fully given: 

- position and geometry of each grain; 
- displacements ( translations and rotations) of each 

grain; 
- contact forces; 
- material properties of the individual grains. 
The behavior of the assembly under external loading 

could exactly be predicted on the level of individual 
grains in this case. But such a detailed description is 
not necessary, and too complicated from a practical 
point of view. Instead, the aim of the microstructural 
approach is tO find macro-level state-variables through 
the proper averaging of micro-variables. 

There are several different ideas in the literature on 
how many, and what kind of variables should be ap- 
plied. It is mostly agreed upon that for practical pur- 

poses a stress-strain relationship should be given as 
the result of any theory; so - as a beginning - a stress 
tensor and a strain tensor have to be defined in terms of 
micro-variables. (A summary of existing suggestions 
will be given a few lines below.) Besides, variables ex- 
pressing the geometrical state of the material are also 
thought to be necessary. Different fabric tensors were 
defined for this purpose to express the directions and 
strength of anisotropy of the microstructure (see, e.g., 
Satake (1983) about simple and weighted second- 
order fabric tensors; Konishi and Naruse (1988) on 
void tensors; Mehrabadi et al. (1988) on fourth-order 
fabric tensors). Other state variables can also be found 
in the literature (Cundall et al., 1983, Cambou, 1993, 
Koenders, 1993, and others), and not even the number 
of necessary variables is clarified. So the problem of 
finding suitable state variables is an area under active 
research today. 

1.2.1. Stress 
Several microstructural stress definitions have been 

given until today. The first one suggested by Drescher 
and de Josselin de Jong (1972) is still rather close 
to the continuum-mechanical approach. Consider a 
spherical assembly of volume V consisting of grains 
having arbitrary shape; the assembly is submitted to 
external forces T/1 , T/2 . . . . .  T m on its boundary points 

1 2 ., x m. The average stress of an equivalent X i , X i , • . 

continuum of the same V volume under the same loads 
is 

/71 

_ 1 ~ xkTk 
O'ij ----" "~ /_..¢ ~ J ' 

k=l 

so this expression can be applied as a definition of the 
stress tensor in granular assemblies. 

A real microstructural definition was already given 
by Christoffersen et al. (1981) where the average 
stress of  an assembly of  grains with arbitrary shape is 
expressed with the help of the individual contact forces 
inside the assembly. The analysed finite-sized domain 
is subjected to a special load p i ( x j )  having the form 

P i  = load O'ij n j  , 

where o-~ ad is a second-rank tensor and ni is the out- 
wards unit normal vector on the boundary of the anal- 
ysed representative domain. Due to this load, contact 
forces Fi I , Fi 2 . . . . .  F ~  arise between the grains. The 
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principle of virtual work leads to a constraint for these 
forces: 

- load I M 
O'ij = - -  I i F:i , 

V 
C = I  

where ~load oij must be a symmetric tensor to ensure the 
moment equilibrium, and the vector I c connects the 
centroids of the two grains forming the c-th contact. 
The above constraint can be applied as a definition of 
the o'ij = O'i~ ad stress tensor. 

A similar definition was suggested by Rothenburg 
and Selvadurai ( 1981 ), from different theoretical con- 
siderations. Consider first an assembly of contacting 
grains of arbitrary shape; and imagine that a contin- 
uous closed shell surrounds the assembly defining its 
boundary this way. The shell is subjected to a spe- 
cial load pi (x i )  that satisfies the following condition 
in every point of the shell: 

Pi = _ l oad . .  u i j  rti , 

where uij--l°ad is a second-rank tensor and ni is the out- 
wards unit normal vector on the shell. The contact 
forces Fi I , Fi 2 . . . . .  F/g act at the contact points be- 
tween the grains. The analysis of the equilibrium equa- 
tions of the grains show that o-I~ ad can be related to 
the contact forces inside the assembly in the following 
way: 

1 load - = ) ,  - -  C C 
O'ij V ~ I i Fj . 

c=-I 

The vector I c is the branch vector belonging to contact 
C. 

The equation is a constraint on the contact forces 
existing due to the specific boundary load. But this 
equation suggests the definition of stress in a granular 
assembly: 

M 
1 

r , i :  = 
c=l 

which is similar to the previous one. (Naturally, since 
the virtual work principle expresses the equilibrium 
condition of the system, no wonder that the two defi- 
nitions are equivalent to each other.) 

1.2.2. Strain 
One would expect that due to the duality of stress 

and strain, and to the duality of contact forces and rel- 
ative displacements, the microstructural definition of 
the strain tensor is easy to find. Unfortunately this is 
not the case. Though there are some interesting sug- 
gestions (a very good summary of which was given 
by Satake (1989) ), they are rather questionable both 
from a theoretical and from a practical point of view 
(Bagi, 1991). Section 3 of the present paper tries to 
give a definition of the strain tensor in terms of rela- 
tive displacements of neighbouring grains. Our hope 
is that this definition is already theoretically correct 
and physically well-based. 

2. Geometrical representation 

As a preliminary to the definition of state variables, 
this section introduces the suggested geometrical rep- 
resentation of discrete materials. First the concept of 
material cell system and space cell system will be 
explained, then the notations of geometrical micro- 
variables used in the later sections will be defined. 

2.1. The material cell system 

Consider an assembly consisting of grains with 
convex but otherwise arbitrary shape in the 2D or 3D 
Euclidean space where the distance between two 
points is understood in the usual sense; and the PG 
distance between a point P and a grain G is the 
following: 

1. If P is outside G or on its boundary, PG is the 
distance between P and that point of G which has the 
smallest distance from P. (This includes that for a Q 
boundary point of G the distance is zero: QG = 0.) 

2. By definition, i fP  is inside G then PG is negative 
and its absolute value is the smallest distance between 
P and the boundary points of G. 

Consider now a grain Go and collect all those P 
points whose distance from is less or equal than from 
any other grain: 

P G 0 < P G k  (k4= 0). 

These P points form a domain around the Go grain. 
The domain has the following important characteris- 
tics: 
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cells will also be referred to as faces (however, they 
are one-dimensional lines in this case); they intersect 
with each other on nodes. 

Any set of grains having finite material cells will be 
called afinite sub-assembly (the cells are not required 
to form a contiguous domain). The boundary of the 
finite sub-assembly consists of  finite faces, forming 
one or more closed surfaces (curves in 2D). 

Fig. 1. 

- The internal and boundary points of Go all belong 
to it. 

- If PG0 < PGt for all k 4: 0, then P is an internal 
point of the domain; if there exists a Gi for which 
PG0 = PGi < PGk for all k 4 : 0  and k 4= i, then P 
is a boundary point of the domains of Go and Gi. 
Constructing these domains for all the grains the 

space is subdivided as illustrated in Fig. 1 for 2D. 
Notice the following properties: 
- There is exactly one grain in each domain. 
- The domains are contiguous. 
- Grains on the boundary of the assembly have infinite 

domains while the domains are finite in the inside 
of the assembly. 

- The common face of neighbouring domains (be- 
longing to the grains Gl and G2) is the set of P 
points for which PG1 = PG2 < PGk for all k 4 :1  
and k 4: 2. 

- If  two grains have a contact point, the corresponding 
domains must have a common face that contains the 
contact point itself. 
These domains will be referred to as material cells, 

and the total system given by them as the material 
cell system. The following terminology will be used 
in their characterisation: 

(a) in 3D: The common points of neighbouring 
cells form faces; faces join each other on edges (note 
that if the face PG1 = PG2 < PGk and the face PG2 = 
PG3 < PGk have a common edge, then the face PG1 = 
PG3 < PGk also joins this edge); edges intersect with 
each other on nodes. 

(b) in 2D: The common points of neighbouring 

2.2. The space cell system 

The construction of the space cell system is strongly 
based on the above definitions and characteristics. 
Starting from an assembly and its material cell sys- 
tem, the space cell system is defined by the following 
algorithm in 3D: 

1. Nodes of the system are the grain centres (they 
correspond to the material cells). 

2. If  two material cells have a common face, the cor- 
responding grain centres are connected with a straight 
line that will serve as an edge in the space cell system. 

3. Consider now an edge in the material system. 
In the general case three faces intersect on this edge 
(the special geometry when there are four or more 
faces joining the same edge will be discussed a few 
lines below). The three faces define three edges in the 
space cell system in such a way that they form a closed 
triangle; this triangle will be a face in the space cell 
system. 

(Returning to the special case when four or more 
material faces determine the same edge, notice that in 
this case the corresponding space-edges form a closed 
spatial polygon. This polygon has to be triangularized. 
To do this, add an imaginary small disturbance to the 
position of grains in order to destroy the speciality 
of the geometry; this way the material edge will be 
split into separate edges each of them belonging to 
three faces, while new faces will also appear. Now 
the problem is reduced to the general case. It should 
be mentioned that in general there are two or more 
different ways for splitting a multiple edge; any of 
them can arbitrarily be chosen because the solutions 
are equivalent from the mechanical point of view.) 

4. Similarly, consider next a node in the material 
cell system; and consider the edges joining this node. 
As shown before, the edges in the material system 
correspond to faces in the space system; if the material 
edges belong to the same node, the space faces form 
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Fig. 2. 

a closed cell in the space system corresponding to the 
material node. 

The definition is, of  course, shorter in the 2D case: 
1. Nodes of the space cell system are the grain cen- 

tres (they correspond to the material cells). 
2. Where two material cells have a common face, 

the corresponding grain centres should be connected 
by a straight line, similarly to the 3D case; these lines 
will be the edges in the space cell system. 

3. A node in the material system is the common 
point of  joining faces; the corresponding edges in the 
space system form a closed cell. (Triangularization 
may be necessary in the case of a special geometry.) 

Note that in 2D the cells are triangles, and in 3D the 
cells are tetrahedrons so the space cell system consists 
of simplexes in any case. Fig. 2 illustrates the space 
cell system of a 2D assembly. 

The composition and duality of the two systems 
raise several beautiful geometrical problems. Since 
this paper concentrates on the mechanical description 
of the assemblies, the geometrical characterization was 
restricted here to only a summary of the most im- 
portant features whose knowledge will be necessary 
for the definition of mechanical state variables. How- 
ever, another paper is under preparation about the ex- 
act mathematical formulation of the two systems. It 
will discuss problems like triangularization, bound- 
aries, positive and negative space cells, etc., in detail. 

2.3. Geometrical micro-variables 

First the micro-variables characterizing the material 
system will be defined. 

Fig. 3. 

Consider a finite sub-assembly, and a material cell 
in it around a grain. Some of the faces of the cell 
belong to "real" grain-grain contacts; a face like this 
contains the contact point itself. The rest of  the faces 
are considered to belong to "virtual" contacts (there 
is no contact between the grain and its neighbour, but 
their material cells have a common face); in these 
cases an arbitrary internal point of the face has to be 
chosen as the virtual contact point. The vector showing 
from the centre of the grain into the grain's c-th (real 
or virtual) contact point will be denoted as v e. 

Assume that the GI and 132 grains have a (real or 
virtual) contact, c. The vectors v~ c and v2i c show from 
the corresponding grain centres to the contact point. 
The branch vector assigned to the contact is defined as 

as illustrated in Fig. 3 for 2D. In the special case when 
c is on the boundary of the sub-assembly (so it is 
a contact between a grain and the neighbourhood of 
the sub-assembly), the branch vector is defined to be 
equal to v~ (see again Fig. 3). 

Now turn the attention on the characterization of 
the space cell system. 

Consider a space cell and number its nodes as 
1,2 . . . . .  (D + I ) .  (The cell is a simplex so it has 
(D + I)  nodes.) Denote the faces of  the cell by the 
number of  that node which is not contained by the 
face (i.e. the k-th face contains all the nodes except 
the k-th node). Assign a vector b~ to each face in the 
following way: 
- The magnitude of b/k is equal to the area of the face 

(or length in 2D). 
- The direction of b/k is normal to the face, pointing 

outwards. 
x-'D+I b~ = 0 for any cell, (It can easily be proved that/~k=-I 

for both 2D and 3D.) 
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Fig. 4. 

The next vector, a k, is defined as 

1 k 
aki = - - ~ b  i . 

These vectors are illustrated in Fig. 4 in 2D. 
The a~ vector is the basis of the definition of the 

most important geometrical micro-variable of the 
space cell system: the so-called complementary  area 
vector. To construct it, consider a pair of grains, G1 
and G2, that have a (real or virtual) contact, so the 
two grain centres, 1 and 2, are connected in the space 
cell system. Collect now all those space cells that 
contain this edge. Assume that altogether T cells were 
found; denote them as cell ( 1 ), cell (2) . . . . .  cell ( t) ,  
. . . .  cell(T). In the next step calculate the difference 

i(t) 2(0 separately in each cell from t = 1 to T; a i -- a i 
after summation over all space cells containing the 
1-2 edge, the complementary area vector 

T 
d~ 2 1 

- D + 1  ~ (al(t) -- ai-20)j'~ 

is given. (Its dimension is area in 3D assemblies and 
length in 2D.) This vector characterizes the local ge- 
ometry of the neighbourhood of the 1-2 edge. 

Fig. 5 is an illustration in 2D where the 1-2 edge 
belongs to two cells shown by solid lines. The direc- 
tion of d) 2 is as shown, and its magnitude is equal to 
the one-third of the dotted length. A similar - though 
more difficult to visualize - meaning can be found for 
d~ 2 in 3D too. 

The vectors introduced above (I  c, aki , d'~ n) will 
strongly be relied upon in the coming sections. 

Fig. 5, 

3. Strain 

This section introduces the suggested definition 
of the strain tensor in granular assemblies. Since 
the definition is built up with the help of  the aver- 
age displacement gradient tensor of continua, first 
the continuum-mechanical concept will shortly be 
recalled; then, based on the space cell system, the 
definition will be given for a granular material. 

3.1. Cont inuum 

A continuous displacement field, ui ( x  j )  is given on 
a closed continuous domain (the vector u i ( x j )  de- 
notes the translation of the point having the position 
xi before the displacement). As illustrated in Fig. 6, 
V is the volume of the domain, S is its surface, and 
ni is the outwards unit normal vector on S. Let e 0 = 
% (xk )  denote the displacement gradient tensor: 

t~u i 
e i j =  j6x-- " 

According to the Gauss-Ostrogradski theorem, the vol- 
ume average of e can be expressed as a surface inte- 
gral on S: 

- L uinj  d S  eij 1 e 0 dV  = 
= s i s  . l i  • 

(v) (s) 

(1) 

If  the domain is divided into subdomains (see Fig. 
7), an average displacement gradient tensor can be 
calculated separately for each subdomain: 
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~ S 

Fig. 6. 

1 
,D = F S / u , n , ' S .  

(S L) 

It is easy to see that if the domain and the displace- 
ment field is continuous, the volume-weighted aver- 
age of the ~ tensors will lead to the same expression 
as (1): 

eij = V ~ ix V ~ uinj dS 
(L) (L) 

l// 
V uinj dS .  (2) 

(s) 

Its skew-symmetric part is the average rigid-body 
rotation of the whole domain (i.e. the volume- 
weighted average of the rotations of individual subdo- 
mains); the symmetric part reflects the deformation 
of the domain and is named the strain tensor in the 
usual terminology. 

3.2. Granular material 

To find a state variable that can properly reflect the 
deformations of granular assemblies, our method is to 
replace the assembly by an equivalent continuum so 
that Eq. (2) could be applied; then after discretizing 

\V L 
Fig. 7. 

Fig. 8. 

return to an expression of the displacement gradient 
tensor that contains the discrete micro-variables only. 
In this approach the application of the continuum- 
mechanical formalism is a tool for the averaging of 
the micro-variables - the resulting state variable is al- 
ready of a discrete nature. 

Expression (2) can be applied if the geometrical 
features of the equivalent continuum (division into 
subdomains, S, ni) are clarified, and if a continuous 
displacement field (characteristic for the real displace- 
ment system of the assembly) is created on it. 

Fig. 8 illustrates why the space cell system is the 
natural basis for the geometrical modelling. As shown 
here for simple compression and for simple shear, the 
global deformation of the assembly is very well rep- 
resented by the deformations of the space cells since 
they characterise the distortions of the internal struc- 
ture itself, instead of an individual grain or contact. 
(Note that the deformations of space cells do not loose 
their meaning even if there are topological changes, 
for example, contacts lost or created in the assembly.) 

A continuous displacement field can be defined for 
any finite set of space cells in the following way. On 
the nodes of the simplexes let ui(xj)  be equal to the 
translation of the grain centre while inside the sim- 
plex ui(xj)  is defined as the linear interpolation of 
the node translations of that simplex. The ul (x j) field 
assigned to the assembly this way is piecewise linear 
inside the simplexes and along the faces and edges, 
and continuous throughout the whole system. 

So consider now the L-th space cell whose average 
displacement gradient tensor is 

' i i  ~ = ~ uinj dS, 

(S L) 

which, using the fact that Ui(Xj) is linear alongthe 
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boundary, can be written in the following discrete 
form: 

D + I  

= ~ u i a  j , (3) 
k=l 

where V L and S L are the volume and boundary of 
the L-th simplex, the index k runs over the nodes of 
this simplex, u/k is the translation of node k, and a/k 
was defined in Section 2. Since the sum of a~ vectors 
belonging to a simplex is zero, expression (3) can be 
modified by distracting the same u ° vector from each 
nodal displacement of the cell: 

D + I  
1 ~ L =  ~ E ( uki --uO) aj 

k=l 

(its physical meaning is that the rigid-body transla- 
tions do not change the deformation of the cell). Let 
u ° be chosen as the average translation of the nodes: 

D + I  

° =  1 f , _ _  
ui D +  1 

k=l 

which gives that the average deformation gradient ten- 
sor of the L-th cell is 

1 1 
~L = D + I V L E (um - un) (aT - a T )  ' 

m < n  

so after introducing the notation Au'~ n = u m - u ~ ,  sum- 
ming over the whole system and according to the def- 
inition of d~ 'n in Section 2, the average displacement 
gradient tensor is expressed by the relative displace- 
ments of the pairs of nodes forming the edges of the 
cells: 

_ 1 V "  Au.mndm. n (4) 
e(j = -V Z...~ ~ J 

m,~ n 

(the summation runs over all edges of the space cell 
system). Expression (4) contains discrete micro- 
variables only: relative displacements of neighbouring 
nodes and the corresponding complementary area vec- 
tors. The skew-symmetric part of this tensor reflects 
the average rigid-body rotation of the space cells. 
The symmetric part - similarly to the continuum- 
mechanical variable - expresses the deformations of 
the cells, and it is suggested to be the strain tensor o f  
granular  assembl ies .  

4 .  S t r e s s  

This section introduces the definition of the stress 
tensor in granular assemblies. As an introduction to 
that, a calculation of the average stress in a continuous 
domain divided into subdomains will be summarized 
in Section 4.1; then the stress definition for granular 
materials will be shown with the help of the material 
cell system. 

4.1. Average stress in cont inuum 

Consider a closed continuous domain with volume 
V loaded on its boundary S by a distributed force 
p i ( x j ) .  Depending on the loads a o ' i /=  o ' i j ( xk )  stress 
tensor belongs to every point of the domain satisfying 
the boundary conditions 

orijnj = Pi ,  

where ni is the outwards unit normal vector on S. The 
volume average of the stress tensor can be expressed 
- with the help of the Gauss-Ostrogradski theorem - 
as a surface integral: 

Ifff Iff O'ij = -~ O'ij dV  = -~ x iPj  d S .  

(v) (s) 

(5) 

If  the domain is divided into subdomains, the aver- 
age stress tensor can be calculated separately for each 
subdomain: 

1 

(S L) 

where V L and S L are the volume and boundary of the 
L-th subdomain, distributed forces p i ( x j )  act on S L 
from the neighbouring subdomains and the external 
boundary. To get a global average, volume-weighted 
averages of O "L can be calculated and it results in the 
same expression as (5):  

 vL. (:: ) 
(L) (L) (S L) 

' / /  = - -  x i P j  d S .  
V 

(s) 
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In those cases when there are concentrated forces 
instead of  the distributed loads acting on the boundary 
of  the domain and between the subdomains, the above 
expression can be written in a discrete form. Denote 
the forces acting from outside as Fi I , F 2 . . . . .  Fi k . . . .  ; 
they act at boundary points x],  x 2 . . . . .  x k . . . . .  Expres- 
sion (5)  is modified as 

_ 1 ~ xkFk Or iJ = -v Z...j i j 
(k) 

(6) 

(the index k runs over the external loading forces). 
Now consider the L-th subdomain; the forces F,. 1 , F, 7, 
. . . .  F[  . . . .  act on its boundary at the points x~, x 2, 
. . . .  x~ . . . .  ; (partly from the neighbouring subdo- 
mains and partly from outside). So the average stress 
here is 

1 
= 

(c) 

Since the forces inside cancel out in the summation, 
the volume-weighted average for the whole domain - 
as already seen in (6) - is: 

1 1 (~--,xC.FC. ~ r, ' 

(L) (L) \ (c) / 

1 ~ xkFk 
(k) 

(7) 

C 

t.. .e 

Fig. 9. 

contact is virtual, F[  = 0 of  course; and if the contact 
is on the boundary, F c is a force acting from outside.) 

Now expression (7) will be transformed into a form 
containing discrete micro-variables only. First, the x c 
vectors can be decomposed into two parts, as shown 
in Fig. 9, 

= + X i 

where x~i is the co-ordinate of  the centre o f  the L-th 
grain. In lack of  body forces the equilibrium equation 
~ ( c )  F~ = 0 holds, so 

y ~ ' x ~ ;  = X;-',,CFC / ~ i j "  
(c) (c) 

(8) 

4.2. Granular material 

Now turn to the definition o f  the stress tensor 
in granular assemblies. Consider any finite sub- 
assembly; expression (7) will be used for finding 
the proper stress tensor to describe the state o f  the 
material. 

Our aim is to find a definition based on the con- 
tact forces between the grains, and on the geometrical 
characteristics of  the assembly. Obviously the mate- 
rial cell system is the proper basis for this task: mate- 
rial cells divide the space into subdomains in such a 
way that contact forces act between them, so the above 
derivations and the resUlt in (7) are directly valid. In 
this case V L is the volume of  the L-th material cell; 
- c is the co-ordinate of  the tr~ is its average stress; x i 
contact point where the F/c contact force acts. ( I f  the 

In the double sum in (7) each contact is considered 
twice, except from the boundary contacts. So instead 
of  the l, c vectors we can apply the branch vectors 
defined in Section 2, hence 

1 1 

(L) (c) 

(9) 

(it is easy to show that in lack of  body moments this 
tensor is symmetric). 

Expression (9) is clearly equivalent with the previ- 
ously existing results summarised in Section 1, found 
from different theoretical considerations. So our sug- 
gestion is to use the form (9),  which is based on the 
material cell system, as the definition of  the stress ten- 
sor o f  granular assemblies. 
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........... ~ 

Fig. 10. 

5. Duality of  the state variables 

A definition of the state variables in terms of dis- 
crete micro-variables was suggested in the previous 
sections: 

1 
AuCid~j (10) eij = -~ 

l 

(c) 

I &(~ = -~ E l C F ; .  (11) 

(c) 

The two forms show a strong duality. Summation 
with index c runs through the same contacts in both 
cases (except for the boundary, see below); contact 
forces belong to the same pairs of grains as the relative 
displacements; and the product of the two geometrical 
parameters is a volume (in 2D an area) characteriz- 
ing the geometry of the local neighbourhood of the 
contact. 

But the duality is not complete since expressions 
(10) and (11) cannot belong to the same domain. 
The strain tensor is the average of the strains in the 
space cells; so the boundary of a domain where strain 
is meaningful has to go through the centres of the 
particles. The solid lines in Fig. 10 illustrate the two 
possibilities for this type of boundary. On the other 
hand, the stress tensor is the average of stresses in the 
material cells, so any domain where stress is defined 
is built up of material cells (the dotted line in Fig. 10 
shows that this type of boundary is always different 
from the previous ones). 

Fig. 11 illustrates this phenomena too. The small- 
est unit where stress is defined is the individual ma- 
terial cell (solid line in the middle), but strain is not 

! :. !~ii:: iiii:.~ i !" V I T i * ~ ' I ~ ~  ............. ~ :~,~,:~ :~ ::~, ~ ~ ~  ~ ' " ~ t : "  :~:: "~ii:~ii~i~ii::~ iii~ : : ~  

~ i ~  ~:%~ :'× . 

i 

Fig. 11. 

defined here: the nearest domain where the strain ten- 
sor is meaningful is shown by the dotted line. The 
next stress-type boundary is illustrated by a solid line 
again. This process can be continued, and increasing 
the two types of domains further and further, the dif- 
ference between them, compared to the domain size, 
decreases. In the limit of going to infinitely large do- 
mains the difference tends to zero as the granular as- 
sembly tends to the continuum. 

The fact that the two types of domains differ from 
each other seems to be a fundamental characteristic of 
granular assemblies in contrast to continua. Its physi- 
cal meaning is that while the deformations of the ma- 
terial are carried on principally by the voids between 
the grains, the loads and stresses are transmitted by 
the grains themselves. 

6. Concluding remarks 

A microstructural definition of stress and strain ten- 
sors was suggested for granular assemblies in this pa- 
per. Stress was defined as the average of the stresses 
in the material cells; and strain was given as the av- 
erage strain of the space cells. This definition is sup- 
ported by the physical experience that while the forces 
acting on an assembly are resisted by the grains (the 
grains correspond to the material cells), the deforma- 
tions are carried on by the internal structure and the 
voids (reflected by the distortions of the space cells). 

As the next steps, our researches focus on two prob- 
lems within the search for the relationship between 
stress and strain. First, statistical studies are carried 
on recently to predict the characteristic distributions 
of  micro-level variables (contact forces, relative 
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displacements, geometrical micro-variables) if the 
macro-level state variables are prescribed. Features of 
these distributions are expected to be indispensable in 
the constitutive equations of granular assemblies. Sec- 
ond, theoretical efforts concentrate on the analysis of 
particle rotations, a phenomena of fundamental im- 
portance in discrete systems. Since particle rotations 
relate the relative displacements at the contacts to the 
translations of grain centres, they seem to have a pe- 
culiarly important role in establishing a link between 
the two complementary geometrical systems and, in 
the future, in finding the stress-strain relationship. 
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