‘L Composing Transformations

= Typically you need a sequence of transformations to
position your objects
= €.g., a combination of rotations and translations

= The order you apply transformations matters!
= €e.g. rotation and translations are not commutative

@/ Translate (5,0) and then Rotate 60 degree

Rotate 60 degree and then translate (5,0)??

Rotate and then translate !!

Composing Transformations - Notation

= Below we will use the following convention to explain
transformations

2‘:: mi1 miz myz 0 \ z

Yy — mMo1 MMaog T1MMas 0 Yy

4 mg1 m3zz m3z 0 z
1 o 0 o0 1/[1

1 1

Matrix applied to left of vector Column vector as a point

| am not concerned with how the matrix/vector is stored here — just focused on
mathematics (but for your information, OpenGL fixed function pipeline
stores matrices in column major order, i.e., m[0][0] = m;; m[O][1] = m,,

m[o][2] = My, ...)

Concatenation

i Composing Transformations -

= There are two ways to concatenate transformation
matrices
= Pre- and Post-multiplication

= Pre-multiplication is to multiply the new matrix (B) to
the left of the existing matrix (A) to get the result (C)
= C =B*A
= Post-multiplication is to multiply the new matrix (B)
to the right of the existing matrix (B)
= C= A*B
= Which one you choose depends on what you do

= OpenGL fixed function pipeline uses post-multiplication. |
will explain why (and this is what we will use)

transformations

i Two ways to think of a sequence of

= How you think of it determines how you should
concatenate the transformation matrices together
(pre- or post-multiplication)

= Both will work but sometimes one is more convenient
than the other

Il ¢ T

Transform with respect to the
global origin and basis

Transform with respect to the local
Origin and basis

the global (world) coordinate system

i Think of transformations with respect to

= Everything you do is relative to the global origin and
the basis

b 4 o & 9

1300 Lz
Step 1 (R): Step 2 (T): Step 3 (S):
Rotated by 30° Translated by (2,0) Scaled by (0.5,0.5)

= In this case, you should pre-multiply the matrices
together V'’ =Mxv = S xT X Rxv

the local coordinate frame

i Think of transformations as transforming

= Every thing you do is affecting the position and the
orientation of the local coordinate frame

‘ifz >/-i \‘\\\ 7
A :

| % =

300 < >

Step 1 (R): Step 2 (T): Step 3 (S):
Rotated by 30° Translated by (2,0) Scaled by (0.5,0.5)

= In this case, you should post-multiply the matrices
V' =Mxv = R xT x SXxv

i Which way should 1 think?

= Of course, both ways will work so it is up to you

= Two methods will give you the transformation
sequence in the opposite order

= It is generally much easier to control the object if you
think of the transformations as moving the local
coordinate frames
= This is how the OpenGL fixed function
pipelined does things!!
= In other words, OpenGL fixed function pipeline
use post-multiplication

OpenGL Post-Multiplication penGL.

OpenGL post-multiplies each new transformation matrix
M =MXx M,,
Example: perform translation, then rotation
0) M = Identity
1) translation T(tx,ty,0) -> M = M x T(tx,ty,0)
2) rotation R(0) -> M = M x R(0)
3) Now, transform a pointP -> PP =MXxP
= T(tx, ty, 0) x R@®) xP 1}

\\\
e |
i 4
[J

[l
\
O

:L OpenGL Transformation

= When use OpenGL, you need to think of
object transformations as moving Its
local coordinate frame

= All the transformations are performed
relative to the current coordinate frame
origin and basis

* Translate Coordinate Frame

Translate (3,3)?

* Translate Coordinate Frame (2)

Translate (3,3)?

‘L Rotate Coordinate Frame

Rotate 30 degree?

30 degree >

‘L Scale Coordinate Frame

Scale (0.5,0.5)?

g > ——t—t—t—t—t—t—t+—+—+—+—+—+—+—+t++++t+t+++

‘L Compose Transformations

Transformations?

Answer:

1. Translate(7,9)
2. Rotate 45
3. Scale (2,2)

‘Another example

How do you transform from C1 to C2?

Translate (5,5) and then Rotate (60)
OR

Rotate (60) and then Translate (5,5) 7?7

Answer: Translate(5,5) and then
Rotate (60)

‘Another example (cont’d)

If you Rotate(60) and then Translate(5,5) ...

i Transform Objects

= What does coordinate frame transformation
have anything to do with object
transformation?

= YOU can view transformation as to tie the
object to a local coordinate frame and
move that coordinate frame

i Example

Think of transformations as
moving the local coordinate frame as
Well as the object

0
60

1) Translate (5,0)
‘ t‘h 2) Rotate (60")

(5,0)

‘L If you think the other way

Transformation as moving
the object relative to the origin of a

global world coordinate frame

0
60

O\

‘ t 1) Rotate (60)

(5.0) 2) Translate (5,0)

Exact the opposite order

i Put It all together

When you use OpenGL ...

= Think of transformation as moving coordinate
frames

= Call OpenGL transformation functions in that
order

= OpenGL does post-multiplication of matrices

= The accumulated matrix will be multiplied to
your object vertices

