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Generating stress-strain relations based upon three-dimensional discrete element simulations, for hier-
archical multiscale constitutive modeling of granular materials at finite strain, requires measures of
stress and strain in the reference and current configurations. The Cauchy stress tensor calculated from
interparticle forces and branch vectors resulting from discrete element simulations, is well-established,
but the various finite strain definitions existing in the literature are not as well studied or accepted.
Thus, the paper develops seven finite strain measures in three-dimensions (Cartesian coordinates
assumed): two are calculated in the reference configuration, and five are calculated in the current con-
figuration. In the process, a time-integrated deformation gradient is formulated, with which the
Cauchy stress tensor can be mapped to either the Kirchhoff stress, first Piola-Kirchhoff stress, or second
Piola-Kirchhoff stress. The difficulty in calculating strain measures for granular materials is the discrete
particulate nature of the materials. In the paper, strain measures are motivated by the equivalent contin-
uum method, but are extended to finite strain in three-dimensions. Simulations are conducted to test the
finite strain measures, and it is found that these strain measures are independent of rigid body rotation of
a particle assembly. Granular Cauchy stress is also calculated for these discrete element simulations to be
able to plot stress—strain curves in the current configuration. Finally, two numerical examples with large
deformation are simulated: (1) cavity expansion, and (2) pile penetration; and their results are analyzed.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction Chang et al. (1992), who broke down granular materials into three
different length scales (decreasing in scale) as shown in Fig. 1: (1)

Within the context of hierarchical multiscale constitutive mod- representative unit, (2) micro-element, and (3) inter-particle con-

eling for granular materials, it is desirable to calculate stress and
strain measures to develop continuum constitutive equations (or
to substitute such measures into a continuum computational
model such as the Finite Element Method (FEM)), which for gener-
ality, should be applicable for large deformations. Examples moti-
vating the need for large deformation analysis of granular
materials include cone penetrometer testing to estimate in situ
shear strength of sands; pile insertion effects in sand; or cavity
expansion in sand due to buried explosives (Regueiro et al.,
2013). The calculation of Cauchy stress for granular materials is
well-established (Christoffersen et al., 1981; Rothenburg and
Selvadurai, 1981; Bagi, 1996), however, for finite strain measures,
in particular in three-dimensions (3D), there is to date no conclu-
sive work on the subject. To begin the discussion, we refer to
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tact. The micro-element scale includes a small assembly composed
of one particle surrounded by neighboring particles. The deforma-
tion at the micro-element scale and the representative unit scale
will be linked together through granular finite strain definitions.
The definitions and formulations of micro-mechanical strain will
be developed at the micro-element scale (i.e., the tetrahedral cell
in a Delaunay tessellation (Bagi, 1996), which links particle
centroids as well as provides the averaging volume domain).
As just mentioned, there are few existing contributions in the liter-
ature that establish a micro-mechanical strain formulation for
granular materials suitable for large deformation analysis,
let alone in three-dimensions (3D). According to Bagi (2006),
Duran et al. (2010) and Fu and Dafalias (2012), these formulations
are based upon two possible approaches: (1) the equivalent contin-
uum approach (Bagi, 1996; Kruyt and Rothenburg, 1996; Kuhn,
1999; Cambou et al., 2000; Dedecker et al., 2000; Kruyt, 2003;
Tordesillas et al., 2010; Fu and Dafalias, 2012), and (2) the
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MICRO-ELEMENT

INTER-PARTICLE CONTACT

REPRESENTATIVE UNIT

Fig. 1. Schematic representation of three length-scale levels of a granular material,
motivated by Chang et al. (1992): (1) inter-particle contact Q" (2) micro-
element (which will be a tetrahedron for 3D ellipsoids) Q™°, (3) sub-domain/RVE/

representative-unit Q¥"°~9°™" and (4) full assembly Q***™V (not shown), where
Qconlact c Qmicro c qub—domain C Qassembly.

best-fit approach (Liao et al., 1997; Cambou et al., 2000; Satake,
2004). The difficulty arises when a strain tensor for a granular
material is calculated from the Discrete Element Method (DEM),
because it is not the same as when calculated for a continuous
material using the Finite Element Method (FEM). The classical
%
OX;
easy to calculate a spatial derivative of the particle displacements
in a DEM calculation because the particles are discrete (i.e., a con-
tinuous displacement field is not immediately identified). As a
result, one approach is to replace the granular assembly by a con-
tinuous domain (Bagi, 1996). In the equivalent continuous domain
the spatial derivatives can be easily calculated, such as by applying
the Gauss theorem (Bagi, 1996) or the method used in this paper
(i.e., to interpolate particle centroid displacements via linear tetra-
hedral shape functions, with tetrahedra identified by Delaunay tes-
sellation). Some conditions must be satisfied in order for a domain
to be considered an equivalent continuous domain, such as (1) the
same kinematics for both the characteristic nodal points and parti-
cle centroids (Bagi, 1996, 2006), and (2) convex geometry. This
leads to what is known as the equivalent continuum approach.

Although there are different micro-mechanical strain measures
for granular materials reported in the literature, additional work is
still needed on the definition of micro-mechanical strains suitable
for large deformation analysis in three-dimensions (3D). Many of
the aforementioned strain formulations are based upon the small
strain assumption and/or are applied only in two-dimensions
(2D), namely they cannot represent large deformations (i.e., large
strains and rotations) nor are formulated or demonstrated for 3D.
Large deformations in granular materials, however, are not
unheard of, such as shear banding in sand assemblies, cone pen-
etrometer estimates of in situ shear strength in sand, pile insertion
effects in sand, and explosive loading of soils (Alshibli and
Alramahi, 2006; Fu and Dafalias, 2012; Chupin et al., 2012;
Regueiro et al.,, 2013). Thus, the small strain assumption is not
applicable in these cases, which motivates the development of
new granular finite strain measures in 3D.

In the context of finite strain, to our knowledge, there are two
potential approaches to calculating strain measures in granular
materials based upon DEM simulations. One is using the rate of
deformation tensor d proposed by Fu and Dafalias (2012), and

small strain definition, €; =1 (% +

o ) can be used, but it is not

although they compared their micro-mechanical strain to
macro-wall-strain (i.e., the strain calculated from the boundary
displacements), in 2D simulations, they did not show analytically
that their measure is valid for large deformations considering also
large rigid body rotations of particle assemblies. In addition, they
used reference triangles to calculate the micro-element rate of
deformation tensor instead of Delaunay tessellation (Bagi, 1996),
in order to be able to ensure concave particle assembly shape
and avoid noise in the strain calculations (Fu and Dafalias, 2012).
Each reference triangle spans a number of particles, and only the
velocities of the three vertices are considered. This will lose the
contribution and information provided by other particles con-
tained within the reference triangle. This particular definition of
rate of deformation tensor by Fu and Dafalias (2012) is closely
related to our definition, yet we use a Delaunay tessellation and
consider other large deformation granular strain measures (e.g.,
Lagrangian, Eulerian, and Hencky) and extend to 3D. Another finite
strain approach is based upon the accumulation method of Chupin
et al. (2012), who used their definition to calculate finite strain in
shear bands with Digital Image Correlation (DIC). Although theirs
is an experimental study at finite strain, the formulation can be
used in a DEM simulation as well. Their formulation, however, is
based upon a finite element grid. They did not look into the
micro-element level of strain in the soil assembly (Fig. 1).

Another approach to calculating finite strain from discrete ele-
ment simulation results, was considered in (O’Sullivan et al.,
2003), in which they calculated finite strain (the Green-Lagrange
strain tensor) from discrete element simulations in two and three
dimensions, accounting for particle rotations within the contin-
uum displacement field approximation. In three dimensions, they
also espoused the linear tetrahedron to interpolate particle dis-
placements, from which displacement gradients can in turn be
easily calculated. To address the non-smooth, or “erratic”, dis-
placements of the particles within a shear band where there is
localized deformation, for instance, they took advantage of the
nonlocality of meshfree interpolation functions (smoothed over a
window of defined length scale) to interpolate the particle dis-
placements, and as a result smooth the strain values within a shear
band. This is an interesting approach to the problem, however it
introduces another aspect to the continuum interpretation of the
discrete element results that at the moment we would like to
avoid. Such nonlocal, or generalized continuum interpretations of
the discrete particle kinematics is worthy of further study, and is
of interest to the authors. For now, we address the non-smooth
particle displacement behavior by calculating rate quantities of
deformation (such as the velocity gradient in the current configu-
ration) and integrating them in time to obtain finite strain
measures.

Therefore, because of the lack of appropriate granular finite
strain formulations existing in the literature for 3D, the paper
develops seven new granular finite strain measures that may be
implemented within a DEM code. These granular finite strain mea-
sures have been verified, analytically and numerically, that they are
independent of rigid body rotation of the particle assembly. On the
other hand, the strain of Bagi (1996) cannot pass the large rotation
test, even though Bagi (2006) and Duran et al. (2010) stated that the
strain measure of Bagi (1996) is the most accurate formulation
when comparing granular strain with the macro-wall-strain (i.e.,
the strain calculated based upon the boundary displacements).
The comparison to macro-wall-strain alone is not a sufficient test
of a granular finite strain measure, and thus we introduce a large
rotation test, as well as consider two numerical examples demon-
strating large deformations in granular materials (cavity expansion
and pile penetration).

Among these aforementioned strain measures, there are two
micro-polar strains that consider particle rotation as well as particle



B. Zhang, R.A. Regueiro/ International Journal of Solids and Structures 66 (2015) 151-170 153

translation (Kruyt, 2003; Tordesillas et al., 2010). Bonelli et al.
(2012) have shown that particle rotations need only be considered
for sub-domains with few particles. Since sub-domains with few
particles (they comprise the micro-element scale instead of the rep-
resentative unit scale in the sense of Chang et al. (1992) in Fig. 1)
cannot represent a classical continuum granular strain, we ensure
that the granular strain calculations are based upon representative
unit scale (i.e., the sub-domain scale) DEM calculations. Considering
particle rotations in micropolar strain measures requires further
study beyond the scope of the paper, and is of interest to the
authors. Thus, (1) the granular finite strain measures proposed in
the paper will also neglect particle rotations, and (2) formulations
are based upon the equivalent continuum approach and Delaunay
tessellation (similar to Bagi (1996)), but are extended for finite
strain and 3D. In addition, with the Representative Volume
Element (RVE) (also known as, the representative unit or
sub-domain), the strain and stress spatial distribution for any full
assembly can be obtained in 3D. In Fu and Dafalias (2012), they
showed that with smaller reference triangles, higher spatial resolu-
tion can be obtained. Thus, the Delaunay tessellation that is used to
calculate strain in Bagi (1996) is a good choice. However, (3) formu-
lations here will take advantage of the interpolation method of
isoparametric finite elements instead of applying the divergence
theorem, where Bagi (1996), Kruyt and Rothenburg (1996) and
Kuhn (1999) used the divergence theorem. We note that Fu and
Dafalias (2012) also used the interpolation method to achieve their
finite strain measure. However, in this paper we also calculate gran-
ular Lagrangian and Eulerian strains in 3D, instead of just the rate of
deformation tensor in 2D (Fu and Dafalias, 2012). In addition, atten-
tion is paid to two different volume averaging methods during the
derivation of granular Lagrangian and Eulerian strain measures
(these two averaging methods are: individual average definition
and total quadratic term definition as in Section 3.1.2). The paper
proves analytically that the finite strain formulations are indepen-
dent of rigid body rotation of particle assemblies/sub-domains.
Comparisons with macro-wall-strains are also achieved.

Granular finite strain measures proposed in the paper can be
applied not only to DEM simulation results, but also for the
post-processing of experimental data to calculate finite granular
strains for assemblies of particles. This can be achieved with an
appropriate particle tracking method (Ando et al, 2012;
Druckrey and Alshibli, 2014). The procedures to calculate granular
strain in experiments are similar to Alshibli and Alramahi (2006).
The formulation in Alshibli and Alramahi (2006), however, is not
suitable for comparison to the results in this paper, because
Alshibli and Alramahi (2006) did not obtain their strain values
for representative units (sub-domains/RVEs), but only for groups
of ~10 particles (i.e., the micro-element scale).

The formulation of the Cauchy stress tensor has been well
established and agreed upon by various publications in the litera-
ture, such as Christoffersen et al. (1981), Rothenburg and
Selvadurai (1981) and Bagi (1996), and thus is not re-derived in
the paper.

With regard to notation, lower case symbols are used to repre-
sent variables, or indices of a tensor, in the current configuration,
while upper case symbols are used to represent variables, or
indices of a tensor, in the reference configuration. For example,
X” is the position vector of centroid of particle o in the reference
configuration By, and x* is its position vector in the current config-
uration B¢(parameterized with time t). Einstein’s convention of
summation over repeated indices is implied (Eringen, 1962).

An outline of the remainder of the paper is as follows: Section 2
discusses how a continuous domain is generated connecting parti-
cle centroids via a Delaunay tessellation; Section 3 reviews the
Bagi strain tensor, derives new granular finite strain measures,

and tests them by (i) comparison to macro-wall-strain calculations,
and (ii) via a large rotation test of a particle assembly; Section 4
presents two numerical examples demonstrating large deforma-
tion (cavity expansion, and pile penetration); and Section 5 pro-
vides conclusions.

2. Replacement of granular assembly by continuous domain

The formulation of Bagi (1996) for granular stress is based upon
the Voronoi cell approximation representing contacting grains,
while the strain calculations are based upon the Delaunay tessella-
tion of the granular assemblies as shown in Fig. 2. The Delaunay
tessellation can be generated by Barber et al. (1996), which is used
as the equivalent continuous domain for Bagi’'s formulation of
small strain tensor as well as the method proposed in this paper.
Briefly speaking, this tessellation will split the granular assembly
into many tetrahedrons whose vertices are the particle centroids.
Each edge of a tetrahedron will connect the centroids of two parti-
cles, where these two particles are not necessarily in contact with
each other. If they are in contact, then the edge will represent a real
contact or simply a contact (Bagi, 1996). If they are not in contact,
then the edge will represent a virtual contact (Bagi, 1996).

With the tessellation, a full granular assembly is easily repre-
sented by a series of continuous sub-domains/RVEs, in which the
nodes of the tetrahedrons will have the same kinematics—such
as displacement, velocity, and acceleration—as the granular mate-
rial particle centroids. The kinematic state of these points in the
equivalent continuous domain will remain the same as in the gran-
ular assembly simulated by DEM; thus, the results for granular
strain are consistent between the continuous (tessellated) and dis-
crete (DEM) representations of a granular material.

3. Granular finite strain tensors

In this section, eight different formulations of granular strain
tensor will be presented: one small strain tensor is proposed by
Bagi (1996), and seven new finite strain measures are derived.

Fig. 2. Delaunay tessellation of seven ellipsoidal particles showing four tetrahe-
drons, which is the micro-element length scale according to Chang et al. (1992). The
dashed lines indicate the hidden lines that connect the centroids of those ellipsoidal
particles toward the back of the assembly, and the solid lines are the visible lines
connecting the centroids of those particles toward the front.
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The motivation to derive the seven new finite strain formulations
is to be able to represent finite strains accurately (including large
rotations of particle assemblies), since Bagi's granular strain is
based upon the small strain assumption. We may encounter many
cases for which the small strain assumption is not valid, such as
sand grains under explosive loading, or large shearing during tire
rolling or pile penetration.

It is noted that the finite strain measures developed in this
paper are suitable for calculating finite strain from spatial gradi-
ents of particle displacements provided either by a DEM simulation
or an X-ray computed tomography experiment over a volume aver-
aging domain defined by the modeler, whereas Bagi’s definition of
strain is suitable only at a micro-element level (see Fig. 1) and only
for small strains.

After the definitions of these granular strain tensors are pre-
sented, two tests are conducted in 3D to check the validity of the
measures: (1) comparison of granular strain tensor normal compo-
nents with macro-wall-strain calculations, and (2) a large rotation
test.

3.1. Definitions of granular strain

The granular strain of Bagi (1996) is based upon the Gauss the-
orem, while the calculation of (1) granular Lagrangian strain, (2)
granular Eulerian strain, (3) granular Hencky strain, (4) granular
Eulerian strain by rate-form, (5) granular Lagrangian strain by
rate-form deformation gradient, (6) granular Eulerian strain by
rate-form deformation gradient, and (7) granular Hencky strain
by rate-form deformation gradient, take advantage of the interpo-
lation quality of isoparametric finite elements in the Finite Element
Method (FEM). But all of them are based upon a Delaunay tessella-
tion (Bagi, 1996). Here, the formulation of Bagi’s strain will be
briefly summarized, and more attention will be paid to the deriva-
tion of the granular Lagrangian, Eulerian, and Hencky strains.

3.1.1. Bagi’s granular strain

In Bagi (1996), the average displacement gradient tensor Vu is
derived based upon the divergence theorem and geometric rela-
tions. Then, the symmetric part of the average displacement gradi-
ent tensor will become the average granular small strain tensor €.
The formulation of Bagi’s granular displacement gradient tensor is
as follows,

1
=y ) _Aud, Aup =u —uf Q)]
p<q

where the sub-domain volume V, over which the average value is
calculated, is based upon the Delaunay tessellation, and pand gare
two nodes of a connecting edge (Fig. 3). Here, p < g is used to make
sure that each edge is only calculated once. d* is the complemen-
tary area vector of edge pair (p,q), and can be calculated as,

dfq _ 117 i (b?(tet) _ b?(tet)) 2

tet=1

where the vector is summed over the number of tetrahedra n in
the sub-domain that contains the edge (p,q), which requires our
code to know every edge that a cell contains, and b"™ is the
out-ward area-vector of face pwhich is opposite to node pin tetrahe-
dron tet. The formulation of d” can be more easily understood by
viewing Fig. 3. u? is the displacement of node p, which is coincident
with the centroidal displacement of particle p. Note that for a
classical continuum definition of strain, the individual rotations of
particles are not used. Such strain definitions can be extended for
generalized continua, such as for micro-polar continua (Kruyt,
2003).

Fig. 3. lllustration of the calculation of the complementary area vector d”,
motivated by Duran et al. (2010).

Remark. As the sub-domain deforms (i.e., particles translate and
rotate), the initial tessellation will soon not be valid (ie. a
tetrahedron may become highly distorted such that it could invert
on itself, making the calculation of displacement gradient invalid),
thus the tessellation needs to be updated. A threshold strain value
can be used to control the frequency of tessellation update, namely
when a component of the incremental strain d¢; reaches the
threshold value, then the tessellation will be updated, where J¢;; is
calculated based upon the strain value at the beginning of the
current tessellation as J€; = €; — €;0), Where €; is the current
granular strain, and € is the granular strain at the beginning of
the current tessellation. Here, the absolute value of each individual
component of d¢; will be checked to determine if the tessellation
needs to be updated.

3.1.2. Granular Lagrangian strain

The granular Lagrangian strain tensor is formulated as if for a
continuous material with displacement fields interpolated by FE
shape functions. The spatial derivative of the current particle cen-
troid displacement u with respect to reference position X is then
calculated in this equivalent continuous domain. Since Barber et
al. (1996) currently just provides 4-noded tetrahedral cells based
upon Delaunay tessellation, linear tetrahedral shape functions
are used to interpolate the particle displacements. A summary is
only provided here, with some details provided in Appendix A,
and further details in Felippa (2011). Assuming the four nodes of
the tetrahedron are labeled a, b, c, d, the particle a/nodal displace-
ments are u® = (uf,uf,uj), and we may write the displacement
gradient as,

woub oue ud o ba T
1 1 1 1
ow_ 1 ul ud ous ud @y O Ty (3)
X ever| 2 e 2o O T
ud ud ou§ u
3 3 3 3
wg 0 Tq

where V* is the reference volume of the tetrahedron, and the
w, 0, T parameters are related to the global nodal coordinates, with
further details provided in Appendix A.
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Since the displacement gradient tensor 2% is constant in each tet,
the volume integrals can be calculated in a straightforward manner
as,

ter [ OU
L Gx) v =v=(%)
ou e (O
fo () = (%) g
- (ou\" /ou e (0w (Ou
.- (87) () =r(x) ()

Granular finite strain: Recall the Lagrangian strain tensor from
continuum mechanics (Holzapfel, 2000): E = (FTF—I)/Z. With

the displacement gradient tensor Z—; the granular Lagrangian

strain tensor over the sub-domain is derived as,

VZ VtetE[et _ VZ|: pret Vm /m %(FTF —I) dv:|

LG G GGl

. . . ou ou
With this definition, we calculate (8_)() <8X> directly for each

tetrahedron, and then obtain its volume average as a whole. Then,
this term is called a total quadratic term definition. On the other
hand, another possible definition is the following,

SR RENE)

which can be called an individual average definition, since the indi-

vidual average displacement gradient tensor <d ) has been used,

X
where

@dgfl ou rer OU
oX V; //m oX VZ(V @)

The difference between these two definitions will be discussed fur-
ther in Section 3.2.

3.1.3. Granular Eulerian strain

To calculate the granular Eulerian strain, the equivalent contin-
uous domain and interpolation functions are similarly used as for
the Lagrangian strain definition, except that the spatial derivative
is taken with respect to the current particle coordinates, instead
of the reference particle coordinates. Note that the direct formula-
tion for granular Eulerian strain would be written as,

wr LG @ -GG e o

where v is the total deformed sub-domain volume. This direct for-
mulation, however, cannot be used in a computer code because

the granular Eulerian strain requires the calculation (%) , which

may be singular when the displacement gradient is very small at
the beginning of simulation. Thus, an equivalent Eulerian formula-
tion without the inverse operation is needed. Referring to
Holzapfel (2000), we may derive the continuum Eulerian strain as,

1|ou  (ou\" [ou\/ou
=5l () — (%) (G ©)
2 |ox ox OX ox
Thus, the average granular Eulerian strain with total quadratic term
definition is,

e -@E

and the granular Eulerian strain tensor with individual average def-
inition is,

e=é{(§§t>+ (5e) (o) () an

where
<yret Z_D (12)

)

In the granular Eulerian strain calculation, the current volume of
each tetrahedron ¢, and total current volume of the
continuously-tessellated averaging sub-domain » will be used.

3.1.4. Granular Hencky strain

In addition, the granular Hencky strain can be calculated based
upon the average deformation gradient tensor F. The average
deformation gradient tensor can be calculated from the average
Eulerian displacement gradient tensor in Eq. (12) as

F= <1 - %;’) (13)

Then the granular Hencky strain e can be calculated as
e —mnvb, b=FF (14)

where In(e) and /(e) are matrix operations (natural logarithm, and
square root, respectively).

3.1.5. Granular Eulerian strain based upon the rate of deformation
tensor

Besides the above two finite strain formulations for granular
materials for the individual average definition (which we will
choose based upon the results in Section 3.2), Eqgs. (6) and (11),
the Eulerian strain can also be calculated from the time integration
of its Lie derivative. The advantage to this formulation is to recog-
nize that in a DEM simulation, particles may experience large rel-
ative displacements, such that the particles cross paths (or
inter-mix) over a certain number of time steps (i.e., these are mate-
rial point motions that are disallowed in continuum mechanics,
which states that such motions must be smooth, for which the
Jacobian of deformation J=detF >0 (Truesdell and Toupin,
1960)). Because the dynamic balance of linear momentum and
angular momentum equations of DEM are usually integrated in
time explicitly (e.g., central difference in time), small time steps
are used, thus an incremental calculation of strain in the current
configuration is warranted. First, the deformation rate tensor for
a granular material is introduced.

(1) Deformation rate for granular materials. Recall the defini-

tion of the deformation rate tensor d as the symmetric part of the

velocity gradient = (both written as averages for the granular

strain definition), such that,
— T
= ov [(ov
d= 2{6x+<6x> } (15)

where

a b a0 4d Wq 00 Tq
vy V7 U7 — tet
ov 1 wp Oy T OVder 1 & (et OV
—= s Vb v v , = — plet—
ox Gyt ) il o 0 me X viH ox
v§ vy V5 14
g Og Ty

(16)
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Thus, the granular spatial velocity gradient I and deformation rate d
tensors will be,

1==-, d=sym(l) (17)

2|3

(2) Granular Eulerian strain by rate form. It is possible to
show (Holzapfel, 2000) that the Lie derivative of the Eulerian strain
L e, with respect to the current velocity w, is equal to the rate of
deformation tensor d as,

L.eetletel=d (18)
By definition, the Lie derivative is objective (Holzapfel, 2000) with
respect to arbitrary rigid body motions of the granular assembly
in the current configuration. We then apply a semi-implicit time
integration scheme to obtain the granular Eulerian strain by
rate-form at current time t,,; as,

€ =€+ (dnﬂ - lgﬂen - enln+l)At (19)

where At = t,,; — t, is the time increment over which strain is cal-
culated (i.e., it is not the actual time increment used in the central
difference in time integration). Based on Eq. (19), the granular
Eulerian strain by rate-form using Eq. (17) can be calculated as,

€=+ (Enﬂ . E,J,H])At (20)

3.1.6. Granular deformation gradient based upon the velocity gradient,
and associated finite strain measures

Similar to how the granular Eulerian strain by rate-form is calcu-
lated in Section 3.1.5 by a semi-implicit time integration of the Lie
derivative of the Eulerian strain over a calculation time interval At
(i.e., not the time step of the central difference in time integration
of the DEM balance of linear and angular momentum equations),
here we integrate in time the velocity gradient to calculate a gran-
ular deformation gradient by rate-form and associated granular
finite strain definitions. We start with the classical definition of
the velocity gradient in the current configuration as,

I=FF' 21)
where the time derivative of F may then be written as,
F=IF (22)

We integrate Eq. (22) over the calculation time interval At such that a
Backward Euler time integration for the deformation gradient at
current time t,,; is written as,

— - 1

F,.1=(1-Atl,1) F, (23)
and a semi-implicit time integration leads to,

Fo.i = (1+Atl)F, (24)

We can now write directly the granular finite strain measures, such

as the granular Lagrangian strain by rate-form deformation gradient,
_ 1 - -
EnH :j(FLr]FnH *1) (25)

and the granular Eulerian strain by rate-form deformation gradient,
_ 1 — — —

€n = j (1 - b;l1)7 bn+1 = FnHFLl (26)
and the granular Hencky strain by rate-form deformation gradient,

é’:+] = In\/En+1 (27)

From a finite strain constitutive modeling perspective, the granular
velocity gradient I,,; and the granular deformation gradient by
rate-form F,,, are the fundamental deformation measures to drive

a constitutive model subroutine (i.e., rate-based, or direct integra-
tion). Also, the granular finite strains in Eqs. (25)-(27) provide suf-
ficient measures to which to compare to experimental data in terms
of constitutive model development. The granular Eulerian strain by
rate-form and granular Eulerian strain by rate-form deformation gra-
dient yield the same values, thus we only show results once for both
strain measures, and then going forward only use the granular
Eulerian strain by rate-form deformation gradient.

3.2. Tests of granular strains

For direct calculations of granular Lagrangian and Eulerian
strains in Egs. (6) and (11) (i.e., not the rate-form expressions nor
the Hencky strain), two different sets of formulations can be
obtained based upon the total quadratic term definition and the indi-
vidual average definition. Formulations based upon the two differ-
ent definitions will be identical for the small strain case. They
show, however, significant differences in the finite strain case,
which comes from the different averaging approaches for the
quadratic term. Consider an assembly containing only two tets,a
and b, as an example to explain the difference, see Fig. 4.

The normal component of the quadratic term in the x; direction
when calculated with the total quadratic term definition is as follows,

lz - % tet % tet _ 1 e % a % a N » % b % b
V4 0x1 0% v 0x1) \0% 0x1 0x1
(28)

The normal component of the quadratic term in the x; direction
when calculated with the individual average definition is as follows,

@) ex ) )
S ) )]
o (G ) 7 () ()]

() (D)) ()

where vis the total volume of the averaging sub-domain, and »° and
v are the volumes of each tet in Fig. 4. In the total quadratic term
definition, the quadratic term will be a linear function of 2, while
in the individual average definition, the term will be a quadratic
function of . Since 2* < 1 always holds, the quadratic term in
the total quadratic term definition will be larger than or equal to that
in the individual average definition. As the assembly becomes larger
with more particles, % will become smaller, and then the quadratic
term in the total quadratic term definition will become noticeably
larger than that in the individual average definition.

With this difference, granular finite strain calculated from the
two definitions will be noticeably different for large deformation.
Results show that finite strain calculated from the total quadratic
term definition is large compared to the wall strain value. Fig. 5
shows the granular strains based upon the total quadratic term def-
inition as compared to the individual average definition and wall
strain for the isotropic compression of an assembly with 52 F-75
Quartz Ottawa sand grains. The Lagrangian strain and Eulerian
strain based upon the total quadratic term definition are much lar-
ger than the corresponding individual average definition, which
are comparable to the macro-wall-strain. This means that the
quadratic terms in the strain formulations based upon the total
quadratic term definition are larger, and lead to erroneous results
when compared to the macro-wall-strain. Also, we show in the
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numerical examples later (for cavity expansion and pile penetra-
tion) that the time-integrated deformation gradient F,,; and asso-
ciated strain measures are the proper measures to use given the
tendency for grains to inter-mix during large deformations such
as encountered during cavity expansion or pile penetration. This
in turn supports the individual average definition interpretation,
because when calculating the Lagrangian strain from the deforma-
tion gradient, the displacement gradient terms are multiplied
together individually, rather than averaging the quadratic term
directly. This is why we prefer the individual average definition.

The difference between the wall strain volumetric strain value
and the linear Bagi and finite Lagrangian and Eulerian volumetric
strain values (based upon the individual average definition) in
Fig. 5 is due to the difference in the volumes used to calculate
the average strain values. For the wall strain, the volume is the
cross-section multiplied by the current length of the box which ini-
tially is 1.78 mm?, and for the other strain values the Delaunay tes-
sellation is used to calculate the total averaging volume, which
initially is 1.26 mm?, 70.8% of the wall volume. The linear Bagi
and finite Lagrangian and Eulerian strain values are different based
upon their different definitions.

The aforementioned formulations of Bagi’s strain, granular
Lagrangian and Eulerian strains based upon the individual average
definition, granular Hencky strain, granular Eulerian strain by
rate-form, granular Lagrangian strain by rate-form deformation
gradient, granular Eulerian strain by rate-form deformation gradi-
ent, and granular Hencky strain by rate-form deformation gradient,
are summarized as follows,

1. Bagi’s small strain: €% =1 [V(u) + V(u)T}
— o =\T
2. linear Lagrangian strain: E'™ =1 {(‘)—") + ("—") }

X X

. —\T
H s ine plin _ 1 ou ou
3. linear Eulerian strain: e = J {(5—,‘) + (fm)

4. Bagi finite strain: €beifinite — 1 [V(u) + V) - V(u)TV(u)].
where the average displacement gradient tensor is calcu-
lated by Eq. (1).

— — —\T T /—

5. Lagrangian strain: E =1 {(3—,‘;) + (3—}}) + (3—;’() (;’—,‘})}

- —\T —\T /—

6. Eulerian strain: e =1 {(g—;) + (‘)—z - (%) (g—';)}

7. Hencky strain: @ = Inv/b, b = FF'

8. Eulerian strain by rate-form:
(an+1 - ig+1én - énin+1>At

9. Lagrangian strain by rate-form deformation gradient: E,,; =
L (L, Frin — 1)

10. Eulerian strain by rate-form deformation gradient: €, =1
(1 —b,! )7 BnH =F,F!

e — et

n+1 n+1

11. Hencky strain by rate-form deformation gradient: el , =

In bn+1

where V(u) will be calculated following Bagi’s method in Eq. (1),

g—x is calculated with respect to coordinates in the current config-

uration, and X is calculated with respect to coordinates in the ref-

erence configuration, by Egs. (12) and (7), respectively. Note that

V(u) is calculated from Eq. (1), while g—;‘ is calculated from Eq.

(12), which are different from each other Eq. ((12) is valid for finite
strain, while Eq. (1) is not valid for finite strain).

Two tests are now considered to check the validity of these
strain measures (including the Bagi small strain tensor €5%): (i)
comparison with macro-wall-strain, and (ii) large rotation test of
granular assembly.

3.2.1. Comparison with macro-wall-strain during triaxial compression

The first test of these strain formulations is to compare with the
macro-wall-strain, since the granular strain is meant to link
the macro-deformation of an assembly of particles to the
displacements of individual particles. There are two types of
macro-wall-strain to be compared with (continuing from strain
definition 11 in the previous section):

12. nominal wall strain, €™ = f—OL

%, and
13. logarithmic wall strain, €¢ = In (i),L =Ly+d,

where d is the axial displacement, Ly is the initial distance
between the walls, and L is the current distance between the walls.
The triaxial compression of a 5 mm x 5 mm x 4 mm assembly of
F-75 Quartz Ottawa sand grains has been analyzed with the
parameters in Table 1, assuming Hertzian contact and Coulomb
frictional sliding between ellipsoidal particles; refer to Table 2 for
additional parameters used here and also for the quasi-static pile
penetration example, and to Yan et al. (2010) for more discussion.
The assembly contains 939 particles (i.e., QP-domain _ gyassembly
Fig. 6). A confining pressure of 1000 Pa is applied on the four
boundaries in the x; and x, directions. Top and bottom boundaries
in the x; direction move inwards to compress the assembly at a
rate of 7.0 x 10> m/s. No gravity is applied in the simulation.
The time step for this triaxial compression simulation is
75x1078s, and the tessellation will be updated at every
7.5 x 107> s. The results of calculating the different strain values
versus time are plotted in Figs. 7, 8.

In Fig. 7 the normal strain in the x; direction is negative, which
implies compression, and in Fig. 8, the normal strain in the x;
direction is positive, which implies extension (the x, result is sim-
ilar to the x; result, and thus is not shown). This is expected since
the sub-domain/assembly is being compressed along the x; direc-
tion, allowing dilatation to occur in the x; and x, directions to

tet a

tet b

Fig. 4. A two tet assembly to show the difference between the total quadratic term
definition and the individual average definition.
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maintain the confining pressure. The values calculated from the
different strain measures are within the same order of magnitude,
i.e.,, there is no noticeable error in the small strain or finite strain
measures for triaxial compression except for their differences
due to geometric nonlinearity. For compressive strain in the x;
direction, the rate strain @;3,,; exhibits the largest value. The
two macro-wall-strains in the x; direction can be calculated.

Change of height of the assembly is AL = (1.0x 10° steps)x
(75%10°%) x (=7.0x 10 °m/s) = ~1.05 mm, then e"m — 4t —
0

=105 - 02625 and €5 = ln(i) = In(*=}%) = —0.304. These are

the final values of the two macro-wall-strains in Fig. 7. For normal
strain in the x3 direction in Fig. 7, we can see that these Eulerian
strain measures are close to the macro-wall-strains when the
strain value is less than | —0.15|, which is the maximum strain
value in Fig. 8. After that, e,.; becomes larger than the other strain
measures. The Eulerian strain by rate-form is the same as Eulerian
strain by rate-form deformation gradient as shown in Figs. 7 and 8.
This is because both strains are based upon the spatial velocity gra-

dient I at time t,.;. We will see that the four rate-form strains
(Eulerian strain by rate-form, Eulerian strain by rate-form deforma-
tion gradient, Lagrangian strain by rate-form deformation gradient,
and Hencky strain by rate-form deformation gradient) are the best
strain measures among the seven strain measures presented in
the paper because of the interval nature of their calculation over
calculation time interval At, which will be concluded in Sections
4.1 and 4.2.

3.2.2. Large rotation test

For triaxial compression, the various strain measures lead to
different values calculated due to geometric nonlinearity, although
all within the same order of magnitude, i.e., they can be mapped
with respect to each other through the deformation gradient
(except for the linear strain measures). To further test and compare
these strain measures for granular materials, we consider a rota-
tion test to check if the finite strain formulations are invariant with
respect to rigid body rotation. Consider a rigid body rotation whose
motion is written as,

volume strain

2-
¢ Bagi epsilon v
O Lagrangian v by individual average x
15H O Eulerian v by individual average
' *  Lagrangian v by total quadratic term X% x X X x X X X i
x  Eulerian v by total quadratic term X
¢ wall strain v x %
| X
1 XXX X X x5 X x x
X
X x x
0.5F x>
£ X X
o <
7 . -
0}@“6960@6@66888 Q
QO 00000000
F 000 0be059888888088866000558
x x X 0x «
0.5 x X x x X
-05r x
% x X X x
X
Ak
X
15 I I I I |
0 0.1 0.2 0.3 0.4 0.5
time (s)

Fig. 5. Isotropic compression of an assembly with 52 F-75 Quartz Ottawa sand
grains. Volumetric strain based upon linear Bagi strain, finite Lagrangian and
Eulerian strains based upon total quadratic term definition, and finite Lagrangian and
Eulerian strains based upon individual average definition, with comparison to
nominal macro-wall-strain.

Table 1
Parameters used in the triaxial compression of a 5 mm x 5 mm x 4 mm assembly of
F-75 Quartz Ottawa sand grains.

Time step AtPEM 1x1077s
Compression rate of boundary 7.0 x 1073 m/s
Friction between particles 0.08
Background damping 2/AtPEM

Table 2
Parameters used in cavity expansion (Section 4.1) and and pile penetration
(Section 4.2) examples.

Cavity expansion, Pile penetration,

Section 4.1 Section 4.2

Time step AtPEM (s) 5.0 x 1077 5.0x107°
Mass scale 1.0 10.0
Moment scale 1.0 10.0
Gravity scale (in negative x3 1.0 1000.0

direction)
Background damping 0 4x10°
Normal contact damping ratio 0.30 0.05
Friction between particles 0.50 0.50
Friction between particles and 0.50 0.50

boundaries
Particle Young’s modulus (E) 29 29

(GPa)
Particle Poisson’s ratio (v) 0.25 0.25
Particle density (g/cm?) 2.65 2.65

Fig. 6. Triaxial compression of a 5 mm x 5 mm x 4 mm assembly of F-75 Quartz
Ottawa sand grains.

x=0X (30)
where Q is a proper orthogonal tensor. Then, the deformation gra-
dient tensor for this motion will be

ou
F_Q:>8—X_Q—l (31)

The linear Lagrangian strain tensor for this motion is then calcu-
lated as,
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normal strain along the z direction
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Fig. 7. Normal strain along x3 direction for comparison between granular strain measures and macro-wall-strain: (a) direct strain compared to wall strains; (b) rate strain

compared to wall strains.
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Fig. 8. Normal strain along x; direction for comparison between granular strain measures and macro-wall-strain: (a) direct strain compared to wall strains; (b) rate strain

compared to wall strains.
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which will not be 0 for large values of Q. The finite Lagrangian
strain tensor for this motion is,

£ ()~ () (%) (%)
—2[@-v+r@-v@-1e--

=0

(32)

e

N =

33)

which is independent of large rotation Q. This result also holds for
Eulerian strain e, rate-form strains, and Hencky strain e". Thus, the
finite strain measures should not be influenced by a rigid body

rotation of the whole particle assembly. An analytical proof of
invariance with respect to rigid body rotation is provided in
Appendix B, and a numerical example is provided next.

3.2.3. Numerical results of large rotation test

The 5mmx5mmx4mm F-75 Quartz Ottawa sand
sub-domain/assembly (i.e., QP-domain _ qassembly) il he used to
test if the numerical results of granular Lagrangian strain and gran-
ular Eulerian strain will always be zero during a large rigid body
rotation. In this rotation test, all the particles in the assembly will
be applied the same rotation tensor. Specifically, this assembly will
be rotated along x;,x, and x3 directions at the same time by and
angle £ as shown in Figs. 9-14.

Two different simulations are conducted: one without updating
the tessellation, and the other one with an update of the tessella-

tion at every 1 x 10~ radians of rotation. Both provide exactly
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Fig. 9. Initial snapshot when rotation angle is 0° along x;,x, and x; directions.

Fig. 10. Snapshot when rotation angle is 18° along x;,x, and x3 directions.

the same result because the particles do not have relative displace-
ments during rigid body rotation.

The volumetric finite Bagi strain €% — €, + €y, + €3 is
shown to be ~—4000 at the end of rotation. Bagi’s volumetric small
strain is shown to be ~—80 at the end of rotation. Eulerian volu-
metric strain and Lagrangian volumetric strain are shown to be
~1x 107", rate-form Eulerian granular strain is ~1 x 1073,
Hencky volumetric strain is ~1 x 1078, and the Jacobian of defor-
mation J is exactly =1. The result shows that the average spatial
velocity gradient I =0, which is expected since no relative dis-
placements between particles occur during the rotation. Then the
three volumetric strains by rate-form deformation gradient are
also =0. The volumetric strains of the Lagrangian formulation,
Eulerian formulation, linear Lagrangian formulation, linear

Fig. 11. Snapshot when rotation angle is 36° along x;,x, and x; directions.

Fig. 12. Snapshot when rotation angle is 54° along x;,x, and x; directions.

Eulerian formulation, Eulerian strain by rate-form, Hencky strain,
and Jacobian of deformation are plotted against the rotation angle
in Fig. 15.

The numerical results provided in Fig. 15, together with the
analysis in the above section, demonstrate that the granular
Lagrangian strain, granular Eulerian strain, granular strains by
rate-form, and granular Hencky strain can pass the large rotation
test, meaning these seven granular strains are independent of rigid
body rotation, and they are indeed finite strain measures (as is to be
expected based upon their formulations within nonlinear
continuum mechanics). Combined with comparison to the
macro-wall-strain calculations, these strain measures have passed
the two initial validity tests. We now present more complex
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Fig. 13. Snapshot when rotation angle is 72° along x;,x, and x; directions.
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Fig. 14. Snapshot when rotation angle is 90° along x;,x, and x; directions.

numerical examples at large deformation to further test these gran-
ular finite strain measures.

4. Numerical examples

In this section, two numerical simulations demonstrating finite
strains will be conducted using Ellip3D (Yan et al., 2010), and their
stresses and strains will be plotted: one example is cavity expan-
sion (dynamic simulation), and the other is pile penetration
(quasi-static simulation). Ellip3D is a C++ Discrete Element
Method (DEM) code, in which ellipsoids are used to simulate the
soil particles with parameters in Table 2. For more discussion of
the DEM parameters, refer to Yan et al. (2010). For example, the
mass, moment, and gravity scaling parameters are set to 1.0 for
the cavity expansion dynamic simulation, and set to values greater
than 1.0 to mimic a quasi-static simulation for pile penetration,
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Fig. 15. Plot of volumetric strains for large rotation test.
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Fig. 16. Snapshot at 0.000 s.

using the concept of dynamic relaxation (Underwood, 1983).
Background damping is mass proportional damping, and is O for
dynamic simulations, and a large value for quasi-static
simulations.
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Fig. 17. Snapshot at 0.075 s.

Invariants of stress and strain will be used to plot results during
the large deformation simulations. The definitions of these invari-
ants are introduced:

1. Eulerian octahedral shear strain, which can also be Hencky strain
e' (both direct, or rate-based):

_ 11 _ _ _ _ _
Toct = 9 [(311 — ) + (€11 —833)° + (€22 — 633)2]
2 _ _
T3 (€3, + 85 + 23]

2. Lagrangian octahedral shear strain (direct, or rate-based):

_ 11—~ - _ _
l"ﬁa =9 [(511 - 522)2 + (En - E33)2 + (Ezz - E33)2]

2 _ _
3 (B}, + B33 + B3]
3. Octahedral shear rate of deformation tensor d:
» 17 ,~ N2 N2 —\2
yﬁm, = ) {(dn - dzz) + (dn - d33> + (dzz - d33> }
2 _ _
+5 [ @+ dh + &)
4, Eulerian and Lagrangian volumetric strains (both direct, or

rate-based), volumetric rate of deformation tensor d, Jacobian
of deformation:

Fig. 18. Snapshot at 0.113 s.

E, =Ei1 +Ep +Es3, € =€ +6xn+8s;,
d, =dyy +dp +ds3, J=detF

5. Cauchy octahedral shear stress:

_ 11, _ _ _ _ _
Toet = 9 [(011 —02)* + (@11 — 033)° + (O — O33)°

2 _ _
T3 (03, + 073 + 553

6. Cauchy mean stress:

_ 1 _ _
Omean = §(0'11 + 02 +033)

4.1. Cavity expansion

The cavity expansion simulation will take place within a boxed
assembly of particles, which has boundaries in the x; and x, direc-
tions and bottom boundary in the x; direction but no top boundary
allowing free expansion vertically (see Figs. 16-21, where the black

box indicates the moving sub-domain Q“°~%°™3" and the green
lines are the axes in ParaView visualization package). The dimen-
sions of the box are 0.05 m x 0.05 m x 0.05 m. The box contains
4050 ellipsoidal particles with Dsp = 1.8 mm (i.e., diameter of par-
ticle, 50% of which are smaller). The center of the box is the coor-
dinate origin, the center of the cavity is at (0,0,-0.0125 m), and
the dimension of the cavity is 0.05 times the box size. At first,
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the radius of the particles within the cavity will be increased by 0.4
times such that the contact forces between these expanded parti-
cles will be very large, leading to the initial cavity expansion effect.
Particles will then separate, fly up, and settle again by gravity. The
tessellation is updated at every 2.5 x 107> s, while the simulation

lasts 375 x 107> s. For the granular strains by rate-form, the calcu-
lation time interval At is every 1000 time steps which leads to

At =5 x 107* s; note that At is not the time step used in the central
difference in time integration of the balance of linear and angular
momentum equations in the DEM simulation (see Table 2 for this
time step). Figs. 16-21 are snapshots of the cavity expansion
simulation.

Volumetric stress and strain for the particle assembly during
cavity expansion may be calculated in two ways: (1) take the vol-
ume average over the total assembly (i.e., calculate granular stress
and strain within the total spatial domain, such that

Qub-domain _ pyassemblyy o1 (9) yse a sub-domain to calculate the

granular stress and strain (Q®P~9°main — ¥5embY) Erom these snap-
shots of the cavity expansion, Figs. 16-21, it is apparent that parti-
cles outside of (i.e., below) the sub-domain may not move
significantly, such that only particles within the sub-domain may
experience large deformation. The volumetric stress and strain
are then calculated within this sub-domain. The results from the
two different sub-domains (one is the total assembly of particles

Qub-domain _ cyassembly - and the other is the sub-domain shown

Fig. 19. Snapshot at 0.150s.

varying with time following the top layer of separating particles

in Figs. 16-21, Qsub-domain — qyassemblyy are compared with each
other.

4.1.1. Stress and strain within the total assembly: Q“P~domain _ gyassembly

In Fig. 22(a), for t < 0.01 s, all of the various finite strain mea-
sures are nearly equal. Then, as the particles separate and the
assembly expands, the differences between the various strain mea-
sures become larger. Finally, the strain measures reach
steady-state as the particles in the assembly come to rest under
gravity. When comparing the various strain measures, there are
noticeable differences between them for t > 0.03 s. This is to be
expected because under large deformation, the particles fly up
and separate, leading to significant nonlinear geometric terms that
will make the calculation of the strains (Lagrangian, Eulerian, and
Hencky) different. Recall that there are two general approaches
to calculating finite strain in the paper based upon the Delaunay
tessellation and linear tetrahedral shape function interpolations:
(1) direct calculation based upon interpolation of particle centroid
displacements, and (2) rate-form calculation based upon
semi-implicit time integration of the average, interpolated, veloc-

ity gradient I, ; (from which the integrated rate-form deformation
gradient at time t,.1,F,,; is calculated). We see in Fig. 22(a), the
volumetric granular strains by rate-form are generally smoother

than the direct granular strains, and they return to near zero
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Fig. 20. Snapshot at 0.188 s.



164 B. Zhang, R.A. Regueiro/ International Journal of Solids and Structures 66 (2015) 151-170

& . “
- ;"- zb:‘.;-.- e

Fig. 21. Snapshot at 0.375s.

permanent volumetric strain at the end of the simulation. The ini-
tial and final volumes of the assembly can be calculated by sum-
mation over all the tetrahedral elements in the initial and final
tessellations. The initial volume is V = 111,601 mm?, and final vol-
ume is v = 113,598 mm?>. Then, in terms of predicting steady-state
volumetric strain, the granular strains by rate-form can be trusted
to represent properly the deformation of the expansion simulation
because of the small amount of steady-state volumetric strain
observed, such as, nominally (jv—V|/V)= (113,598 — 111,601
/111,601) = 0.018 or 1.8% ; |v — V|/V is plotted in Fig. 22(a) as
ratio of expanded volume. What is the reason for this? It is because
the direct granular Lagrangian and Eulerian strains E and €, respec-
tively, are defined based upon total particle centroid displacement
vectors u at the current time. For complex large deformation
particle-scale response such as cavity expansion, the particle dis-
placement vectors are large as particles cross each other’s motion
paths. The granular strains by rate-form, however, are based upon

the velocity gradient I,,; (and integrated deformation gradient
F..1) always evaluated with respect to the particle centroid for
each chosen calculation time interval At. Thus, this interval
strain-rate calculation, based upon current tessellation and rate
is more true to the actual deformation.

It is apparent that there are three different phases during the
expansion simulation which can be observed from the strains in
Fig. 22: (i) From O to 0.1 s, the particles in the assembly separate
and fly up. The snapshots of the simulation, Figs. 16-18, also show
this expansion. During this phase, the strain increases very quickly.

(ii) From 0.1 to 0.2 s, the particles in the assembly deposit again
under gravity (snapshots in Figs. 19 and 20). During this process,
the strain decreases. (iii) After 0.2 s, the particle assembly is at near
rest (snapshot in Fig. 21). The strain during this process should
reach steady-state (Fig. 22(a)).

Since the initial expansive force is large, the mean stress for the
particle assembly at the first time step is ~—1.4 x 10* Pa. The
stress plot figure (Fig. 22(b)) is thus plotted after the third time
step. This will be avoided in the next section, when calculating
the stress and strain within the sub-domain volume, because the
initial expansive force is a result of the increased contact forces
of the cavity particles, while these cavity particles are beyond the
sub-domain (black outlined box) in Figs. 16-21. Thus, these extre-
mely large contact forces will not be considered in the stress calcu-
lation within the sub-domain in Section 4.1.2.

The mean Cauchy stress of the assembly during the expansion
simulation (Fig. 22(b)) is negative under compression due to grav-
ity. Since at the initiation of loading, the radius of the cavity parti-
cles are increased by 0.4 times, these cavity particles will overlap
each other and their neighboring particles, which will produce
large initial repulsive contact forces between these particles, and
in turn, large initial particle centroid velocities. As many particles
separate and rise, there will be fewer contacts between particles,
leading to a very quick decrease of the Cauchy stress tensor oy,
and in turn the mean stress (Fig. 22(b)). In this section, the stress
is calculated over the total assembly, and since many particles do
not separate, this will not show clearly the three different phases
of the expansion simulation in the stress figure (Fig. 22(b)). It will
be shown in the next section that the three different phases are
more noticeable in the stress plot for the sub-domain calculation
(Fig. 23(b)). The steady-state final phase, however, is still clear in
the stress calculation in Fig. 22(b). After 0.2 s, the mean stress
(Fig. 22(b)) approaches its steady-state value (negative in compres-
sion for mean stress).

4.1.2. Stress and strain within the sub-domain: QS*P~domain - gyassembly

It was written in the previous section that many particles in the
total assembly do not translate or rotate enough to cause a large
deformation during the cavity expansion simulation; these are
the particles below the separating particles. Thus, calculation of
stress and strain can be performed within the sub-domain (black
box) in Figs. 16-21. The sub-domain consists of all the particles
above the bottom of the sub-domain, in which the stress and strain
for these particles will be calculated. The bottom of the
sub-domain is fixed during the simulation. In this example, the dis-
tance between the bottom of the sub-domain and the bottom of
the container is 0.6x the height of the initial assembly. As men-
tioned in the previous section, the initially expanding cavity parti-
cles are not within this sub-domain. One can calculate the stress
and strain at any point of the assembly with the help of defined
sub-domains (also known as, RVEs; depending on if there are
enough particles to warrant a continuum approximation; the num-
ber of particles in this sub-domain is ~2000).

We compare plots in this section with their corresponding plots
in the previous section, namely Fig. 23 with Fig. 22. It is observed
that the strain magnitudes within the sub-domain are larger than
those within the total assembly because the averaging domain vol-
ume is smaller, yet the motion of the particles is the same.

It was mentioned in the previous section that the stress plot for
the total assembly (Fig. 22(b)) cannot show the three different
phases of cavity expansion simulation (separating and flying up,
settling under gravity, and steady-state at rest), while that within
the sub-domain (Fig. 23(b)) can show clearly the three different
phases. In Fig. 23(b), at the beginning, stresses are very large
because of the initial cavity expansion loading. From 0 to 0.1s
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Fig. 22. Cavity expansion simulation for Q®>-d°main _ Qassembly. 3y yolumetric strain versus simulation time; (b) mean stress versus simulation time.

(snapshots in Figs. 16-18), almost all the particles in the
sub-domain are separating, thus many particles will lose their con-
tacts with each other very quickly, as shown in Figs. 17 and 18,
which will cause the stresses to decrease quickly. Then there will
be a short period (about 0.03 < t < 0.07 s in Fig. 23(b)) that the
contacts are disappearing in the sub-domain, and the stresses will
be nearly zero within this period. From 0.1 to 0.2 s (snapshots in
Figs. 19 and 20), particles are depositing under gravity after they
reach their peaks. More and more particles will re-contact with
each other, leading to increasing stresses during this period. After
0.2 s, particles in the assembly come to rest under gravity, leading
to a stable steady-state stress state. The corresponding volumetric
stress—strain plot is shown in Fig. 24. The oscillations in the mean
stress values are due to particles coming in and out of contact (i.e.,
colliding) as they deposit under gravity, after reaching their maxi-
mum height (and separation distances) at zero stress state. For
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further interpretation of the mean stress versus volumetric strain
curves in Fig. 24 for cavity expansion simulation, we consider the
beginning of loading at the lower left portions of the curves, which
correspond to near zero volumetric strain under static gravity load-
ing (negative stress in compression). As the cavity expands and
pushes dynamically the particles upward, separating them as they
fly vertically, the mean stress (same for each curve, given there is
only one stress definition in the current configuration, but multiple
strain definitions) decreases to zero (i.e., becomes less negative
until it reaches zero). This near zero mean stress state for the four
curves indicates that few particles are in contact. For the four
curves, as the particles continue to separate and fly vertically, vol-
umetric strain (positive in expansion) increases (with values
depending on the finite strain measure used, in this case all in
the current deformed configuration). Because of gravity loading
in the —x3 direction, the particles begin to settle again at
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Fig. 23. Cavity expansion simulation for Q%P-d°omain - Q3ssembly. 3y yolumetric strain versus simulation time; (b) mean stress versus simulation time.
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approximately the maximum volumetric strain, and thus the mean
stress becomes more negative as the volumetric strain decreases.
The purpose of the comparison of these four curves is to show that
the rate-form strains more realistically predict near zero residual
volumetric strain (compare Figs. 16 and 21), whereas the two
non-rate-form curves predict artificial residual volumetric strain
(~0.75 for granular Hencky strain, and ~0.5 for granular Eulerian
strain), thus confirming that the rate-form finite strain measures
are the proper ones to use for interpreting discrete element simu-
lation results.

4.2. Pile penetration

For the pile penetration example (Yan et al., 2010), a large ellip-
soidal particle is penetrated into a particle assembly with fixed
spherical particles as its boundaries shown in Fig. 25(a). The three
semi-principal-lengths of the pile particle are 60.0 mm,6.0 mm ,
and 6.0 mm. Radii of the spherical boundary particles are identical
at 2.475 mm. The free particles are also identical, of which the
semi-principal-lengths are 2.5 mm,2.0 mm, and 1.5 mm. The
dimensions of the container in the x; and x, directions are
—0.025m to +0.025 m, and its height is —0.03 m to +0.06 m.
The sub-domain in which we calculate the granular stress and
strain is 0.03 m to 0.06 m in the x3 direction, and from —0.015 m
to +0.015m in the x; and x, directions, as shown by the
cross-hatched box in Fig. 25(b), and the black outlined box in
Fig. 25(a). There are about 1200 boundary particles and 5000 free
ellipsoidal particles in the assembly, while about 450 particles
are in the sub-domain.

The tessellation is updated every 5 x 10~ s, and the simulation
lasts about 350 x 1073 s. For the granular strains by rate-form, the

calculation time interval At is 1000 time steps, which is =5 x 107> s.
This simulation is controlled by the vertical displacement of the
pile. The speed of the pile penetration is 0.25 m/s, constrained to
be vertical (no lateral or rotational velocity). Within the particle
sub-domain, the stresses and strains are plotted against pile
penetration depth.

It is noticed that there is a significant difference between the
granular Eulerian strains (direct and by rate-form) in Fig. 26.
When the granular Eulerian strain is calculated, only current coor-
dinates x are used in Eq. (11), while granular Eulerian strain by
rate-form still involves the contribution from last strain calculation
step, such as e, in Eq. (20). This leads to the difference between
granular Eulerian strain and granular Eulerian strain by rate-form ;
the rate-form strain is thus more smoothly varying over time.
This difference is a result of the particles inter-mixing (i.e., crossing
paths) within the sub-domain, which the rate-form accounts for,
but the direct calculation of strain does not in a smooth way. The
volumetric granular strains by rate-form (Fig. 26(a)) can reach
~0.2, which is a relatively large deformation. However, the octahe-
dral shear strain is not as large (~0.03, Fig. 26(b)). This is because
there are many particles that rotate during pile penetration, while
their translations are relatively small. At present, the strain mea-
sure formulations in the paper do not account for individual parti-
cle rotations, such that these particle rotations are not considered
in the calculation of shear strain (as we would do for a micropolar
theory (Kruyt, 2003)).

The volumetric and octahedral stress—strain plots are shown in
Fig. 27. The mean stress and octahedral shear stress are increasing
with penetration depth from 0.00 m to 0.03 m, and decreasing
>0.03 m. This region corresponds to the x; dimension of the
sub-domain as shown in Fig. 25(b). This is because as the pile pen-
etrates deeper within the sub-domain, more particles in the
sub-domain will be pushed outward by the pile, thus the contact
forces between particles and pile will increase. These increasing

contact forces between pile and the neighboring particles will be
used to calculate the granular stress, as well as the contact forces
amongst particles. The contact forces between particles and the
pile are larger than those amongst the particles. Thus, the stress
will increase within the sub-domain. As the tip of the pile pene-
trates beyond the sub-domain, there will be fewer particles in
the sub-domain to be pushed out by the pile, thus the contact
forces between the particles and pile will be smaller as the dis-
placed particles adjust to their equilibrium positions. Then the
stress will decrease. The mean stress (Fig. 27(a)) is negative which
implies compression since the particles are pushed outward by the
pile. We can also see clearly that the pile penetration involves two
phases: pile tip penetrates (i) within and (ii) beyond the
sub-domain. The authors note that eventually we will substitute
a discrete numerical method (such as the Discrete Element

mean stress vs. volumetric strain
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Fig. 25. (a) Initial state of assembly in pile penetration simulation, showing cross-
section of plane of penetration; (b) cross-hatched sub-domain for granular stress
and strain calculation in pile penetration simulation.
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Fig. 28. Rotating a triangle in-the-plane.

Method (DEM) in this paper) in the region around the pile tip in
lieu of a continuum approximation (Regueiro and Yan, 2011,
2013). However, there are many analysts who still prefer a contin-
uum approximation (through an Arbitrary-Lagrangian-Eulerian

(ALE) method, or meshless method like the Material Point
Method (MPM) or Peridynamics) rather than maintaining a dis-
crete representation at the pile tip (requiring adaptive computa-
tions to move this discrete particle representation with the
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Fig. 29. Rotating a triangle out-of-the-plane.

moving pile tip). Thus, stress and (in this paper) strain calculations
for general three-dimensional large deformational loading condi-
tions are still of interest in these regions. The DEM simulations in
this paper, and corresponding stress and strain calculations for
large deformations, can be used to motivate these continuum con-
stitutive model forms.

5. Conclusions

Seven finite strain measures for granular materials have been
developed: (1) granular Lagrangian strain, (2) granular Eulerian
strain, (3) granular Hencky strain, (4) granular Eulerian strain by
rate-form, (5) granular Lagrangian strain by rate-form deformation
gradient, (6) granular Eulerian strain by rate-form deformation
gradient, and (7) granular Hencky strain by rate-form deformation
gradient. It is shown that (4) and (6) are equivalent. The compar-
ison of these strain measures, including Bagi’s small strain measure
(Bagi, 1996), with macro-wall-strains has shown that these granu-
lar finite strain measures calculate values close to expected
macro-wall-strains (when using the individual average definition
for the direct strain calculations). In summary, the finite strain
measures have the following advantages: (a) analytical and numer-
ical rotation tests have shown that the seven finite strain measures
for granular materials are independent of rigid body rotation; (b)
these formulations can also be used in the post-processing of
experimental images to calculate strain for an assembly with a
suitable particle tracking method (Ando et al.,, 2012; Druckrey
and Alshibli, 2014); (c) higher order stress and strain formulations
associated with finite strain micromorphic continua can be
extended based upon these present formulations (Regueiro et al.,
2014); and (d) the formulations derived here are easier to imple-
ment than the small strain measures, such as Bagi’s strain (Bagi,
1996), especially in three dimensions (3D) (although Bagi’s strain
tensor is not valid for large deformation). The method to calculate
stress within a granular assembly is based upon the well-known
stress formulations of Christoffersen et al. (1981), Rothenburg
and Selvadurai (1981) and Bagi (1996).

The two numerical examples have shown that the granular
finite strain measures can be used to represent large deformations,
and in particular the rate-form measures provide more realistic val-
ues. The results of a cavity expansion example have shown clearly
the large strains associated with the three different phases of
expansion simulation. A sub-domain has been used in the analysis
of pile penetration, where local large deformation has been cap-
tured. With regard to constitutive modeling for these complicated
numerical simulations involving particulate materials using DEM,
we have shown how stress and strain curves can be generated in
the finite strain regime, which will support constitutive model
development in future work.

In conclusion, the rate-form calculation of the average deforma-
tion gradient over the tessellation, F,,,; (which, in turn, can be used
to calculate any finite strain measure), which is integrated from the

average velocity gradient I,..,, together they (F,.; and I,,,;) provide
the general kinematics needed to formulate hierarchical multiscale
constitutive models for granular media deforming/flowing at large
deformations.
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Appendix A. Tetrahedral volume and coordinate parameters

Recall that V* is the reference volume of the tetrahedron, such
that,

1oXT X XS X
Ve = édet Do v wd (34)
X2 X2 XZ X2
X3 X3 X5 X
and the global coordinate parameters used in Eq. (3) are,
@0 = X5(X5 — X5) — X5(X5 — X3) + X5 (X5 — X3)
fa = —X1(X5 —X5) + X[ (X§ —X3) — X{(X5 — X3)
Mo = X1(X3 — X3) = X{(X5 = X3) + X{(X5 — X3)
@y = ~X5(X5 — X5) + X5(X5 — X5) — X5(X5 — X3)
O = X3 (X5 — X5) = X{ (X5 — X5) + X (X5 — X5)

My = —X1(X3 — X3) + X7 (X3 — X5) — X1(X3 — X3)

e = X5 (X5 — X5) — X3(X§ — X5) + X5(X3 — X5)

0c = —X1(X5 — X3) + X (X5 — X5) — X{(X; — X5)

e = X{(X5 — X) — X7 (X5 — X3) +X{(X; — X3)

wq = =X5(X5 = X3) + X3 (X5 — X5) — X5(X3 — X3)

0g = X7(X5 — X3) = X7 (X5 — X3) + X{(X3 — X3)

Mg = =X (X5 — X3) + X1(X5 = X3) = X{(X3 — X5) (35)
where X[, =1,2,3,0=a,b,c,d are the nodal coordinates of the

tetrahedron in the reference configuration (Felippa, 2011), corre-
sponding to the particle centroids in the reference state.
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Appendix B. Analytical proof of invariance of granular finite
strain formulations calculated from linear tetrahedron
tessellation interpolation

For the linear tetrahedral tessellation interpolation, the granu-
lar Lagrangian strain, and granular Eulerian strain formulations
are shown analytically to be free of a rigid body rotation. From
Eq. (31), one can see that the granular displacement gradient ten-

sor (g-;)(take the Lagrangian strain formulation as an example)

needs to be equal to (Q —1) to replicate a rigid body rotation
exactly, and thus its strain be independent of this rotation. Then,
(i) the individual displacement gradient tensor of each linear tetra-
hedron will be shown to be equal to (Q — 1), and (ii) the granular

displacement gradient tensor g—; for the assembly will be
considered.
(i) Lagrangian displacement gradient tensor g—; for individ-

ual linear tetrahedron From the kinematics of rigid body rotation
in Eq. (30), one can obtain,

U=x-X=QX-X=(Q-1X (36)

Substituting Eq. (36) into the formulation of displacement gradient
tensor, Eq. (3), we have,

g 0, T
ou wy 0, Ty 1
I -1 a b C d 37
oX @-Dix* X x° x] we 0. m |6V 37
wg 0 Ty
To prove that g—; is equal to (Q — 1), we can show that,
wﬂ 0& Tcﬂ
Wp Hb Yy 1
[x® x* x° x] o 6 Wzl (38)
Wy 04 w4

where coefficients ,, 0,, 7t,, and V' are all based upon the refer-
ence configuration coordinates. With the help of the symbolic func-
tions in Matlab, we can define the coordinates of four vertices of a
tetas symbolic variables, and then substitute the four sets of coordi-
nates into Egs. (34) and (35) in Appendix A, and then into the
left-hand-side of Eq. (38), where it is shown that Eq. (38) holds
exactly. The Lagrangian displacement gradient tensor (3%:) for
every tetrahedron will be exactly the same (Q — 1) if all the parti-
cles in the assembly follow the same rotation in Eq. (30). This is
no surprise, as the linear tetrahedron is shown to be complete to
first order (Hughes, 1987), meaning its shape functions can repre-
sent exactly rigid body motion (translation and rotation), as well
as constant strain.

(ii) Granular Lagrangian displacement gradient tensor (g—;>
over the sub-domain. We take the volume average of the
displacement gradient tensor <ng:> of all the tetrahedrons in the
tessellation to obtain the granular Lagrangian displacement gradi-

ent tensor (%) over the sub-domain as,

ou 1 [E)u tet} 1 ou ot OU
B I Pt V6 [ S e N VA R |
ox Etetvte[ Z (()X Etet Vtet (()X ; ax

tet

(39)

The granular Eulerian displacement gradient tensor (%) can also be

proved to be equal to (1 - Q’1> following the same steps, which

will guarantee that the granular Eulerian strain will be independent
of rigid body rotation.

Appendix C. 2D triangle rotation example
C.1. Rotation in-the-plane

Suppose we rotate a triangle (but the relative vertex distances
are unchanged, i.e., no deformation) in its plane by 7/2 about ver-
tex 1, as in Fig. 28, then the granular strain of this triangular tessel-
lation can be calculated by Bagi’s strain formulation as follows. If
Bagi’'s strain tensor were an acceptable finite strain measure, it
should generate zero strain values. As shown in the figure, the dis-
placements of the three vertices are

u m u? m u® = [ﬂ (40)

At present, we assume the complementary area vector, d*, is calcu-
lated based upon the current configuration. Then the outward
area-vector of the vertices, b”, will be,

b = m b® = {‘02} b® = LOJ (41)

For the three edges, the Au?? and d”™ will be,

-1
-1

2. edge 1-3, Au'® = {_22} and d"” :%(b“) —b“)) =1 {:ﬂ

1. edge 1-2, Au'? = [

-4
andd” =} (b® - p") =1 { 1}

3 2
3. edge 2-3, Au® = {_1} and d” =1 (b@ - b(2)> =1 { }

Following the formulation of Bagi in Eq. (1), the average displace-
ment gradient is,

s 1 1 -1
V) = > Au'd) = {1 1 ] (42)
p<q

Then the granular strains based upon Bagi’s formulation for this
rotation example will be,

00
%(V(u) + V@) - V) V) - [0 0} (43)
The finite strain extension of Bagi’s strain provides 0 strain value,
which is correct for this case of in-plane rotation of the triangle.
Similarly, if we calculate the complementary area vector, d”?,
based upon the reference configuration, we have for the Bagi finite
strain values,

1(V(u) V@) + V(u)’V(u)) - {

(44)

00
2

00

C.2. Rotation out-of-the-plane

We now consider an out-of-the-plane rotation about the 1-3
edge, as shown in Fig. 29. If we calculate the complementary area
vector, d”, based upon the current configuration, we have for the
Bagi strain values,
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00 0
%(V(u)+V(u)T) =0 0 05

0 05 1|

0 o -
%(V(u)JrV(u)T—V(u)TV(u)) =0 0 05 (45)

0 05 0|

0 0 0]
%(V(u)JrV(u)TJrV(u)TV(u)) =|o 0 05

0 05 2|

If we calculate the complementary area vector, d*, based upon the
reference configuration, we have for the Bagi strain values,

0 0 0
%(V(u)+V(u)T) -lo -1 -05

0 05 0 |

0 0 0 ]
%(V(u)JrV(u)T—V(u)TV(u)) -0 2 -05 (46)

0 -05 0 |

0 0 0 ]
%(V(u)+V(u)T+V(u)TV(u)) -lo 0o -05

0 05 0

This out-of-the-plane rotation test proves that rigid body rotation
represented by the Bagi strain formulation will lead to large erro-
neous values, as demonstrated in the numerical examples. The
authors note that such analysis was not conducted on tetrahedra,
which are the cell units used to calculate strain in the paper.
However, this two-dimensional analysis provides insight into the
limitations of extending Bagi’s small strain tensor measure to finite
strain, as illustrated by numerical examples in the paper.
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