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ABSTRACT: Digital image correlation (DIC) metrology has been increasingly used in a wide range of experimental mechanics research and
applications. The DIC algorithm used so far is however limited mostly to the classic forward additive Lucas–Kanade type. In this paper, a survey
is given about the formulation of other types of Lucas–Kanade DIC algorithms that have been appeared in computer vision, robotics, medical
image analysis literature and so on. Concise notations consistent with the finite deformation kinematics analysis in continuum mechanics are
used to describe all Lucas–Kanade DIC algorithms. An intermediate image is introduced as a frame of reference to clarify the so-called
compositional algorithms in a two-frame DIC analysis. Explicit examples about the additive and compositional updating of deformation
parameters are given for affine deformation mapping. Extensions of these algorithms to the so-called consistent or symmetric types are also
presented. The equivalency of final numerical solutions using additive, compositional and inverse compositional algorithms is shown
analytically for the case of affine deformation mapping. In particular, the inverse compositional algorithm for affine image subset deformation
is highlighted for its superior computational efficiency. While computationally less efficient, consistent and symmetric algorithms may be
more robust and less biased and their potentials in experimental mechanics applications remain to be explored. The unified formulation
of these Lucas–Kanade DIC algorithms collected all together in this paper can serve as a useful guide for researchers in experimental
mechanics to further evaluate the merits as well as limitations of these non-classic algorithms for image-based precision displacement
measurement applications.
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NOMENCLATURE

bold face symbols Position and displacement vectors and
vectored-valued functions and
matrices

regular symbols Scalars (such as greyscale values of
image pixels and coordinates of
subset points and their deformation
parameters, and so on)

upper case symbols Initial (template) image: forward
displacement, deformation mapping or
transformation

lower case symbols Current (input) image: backward
displacement, deformation mapping or
transformation

subscript i A discrete point i in a subset of
points of an image appeared in a sum-
of-squared differences (SSD)
correlation coefficient

the accent ‘�’over
a symbol

An intermediate image between an
initial image and its current image
coordinates, relative displacement
and its parameters using such an
intermediate image as the frame of
reference

The accent ‘�’ over
a symbol

A special intermediate image that is
used in a symmetric analysis and is

exactly half-way (i.e. ‘symmetric’)
between an initial image and its
current image coordinates, relative
displacement and its parameters
using such a symmetric intermediate
image as the frame of reference

the accent ‘∧’over
a symbol

Relative displacement and its
parameters of an intermediate image

G(X), g(x) Greyscale values of points of an
initial image and its current image
often recorded by a digital imaging
device

X, x Position vectors of pixel points of an
initial image and its current image

(X,Y), (x,y) Coordinates of 2D position vectors
of pixel points of an initial image and
its current image

U(X), ΔU(X) Relative (forward) displacement field
and its increment between a subset of
points of an initial image and the
corresponding points of the current
image

u(x), Δu(x) Relative (backward) displacement
field and its increment between a
subset of points of the current image
and the corresponding points of its
initial image
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Introduction

Displacement measurements are commonly encountered in
many scientific experiments and engineering applications
in general and in materials and structural testing in
particular. The measurement accuracy and precision
requirements are often most stringent in the latter cases as
full-field strains or displacement gradients are needed in
evaluating deformation and failure behaviours of materials
and thermal–mechanical responses of structures under
various types of loadings. In recent years, the non-contact,
full-field deformation measurement metrology based on
digital image correlation (DIC) has increasingly become
the technique of choice in experimental mechanics [1–3].
This development trend is attributed partly to the wide
availability of affordable high quality digital imaging
devices and high performance computers and more
importantly to the sustained research efforts on the
development and implementation of DIC algorithms to
meet such stringent requirements for off-line deformation
measurements. Nowadays, displacements over a reasonably
sized image subset can be measured within an error level
of 0.01 pixel or less when one follows the recommended
digital image formation, acquisition, and processing
procedures in routine laboratory materials testing and
structural monitoring applications [2, 4, 5]. Nevertheless,
as the method is being extended in both spatial and

temporal scales using various digital microscopy and high
speed imaging systems and is being applied to an ever wider
array of materials testing and on-line structural health
monitoring applications, potential opportunities arise about
further research on the formulation of various DIC
algorithms to meet these new challenges involved noisy
images, large heterogeneous deformation and faster and
portable processing needs.

Historically, the initial development of the DIC method
used in experimental solid mechanics applications follows
the coherent optical interferometry techniques. Inspired
in particular by both the electronic speckle pattern
interferometry (ESPI) method and the area correlation
method in pattern recognition, a correlation analysis
instead of the fringe formation analysis was applied at first
to images of laser speckle patterns as acquired in an ESPI
experiment [6]. The DIC analysis algorithm was initially
formulated in terms of the cross-correlation-based inverse
problem of image restoration and rigid body translation of
laser speckle patterns and was quickly extended to more
general situations of white light incoherent digital images
using least-squares correlation and affine deformation [7].
The development and applications of similar spatial-
domain, image-based displacement measurement methods
have also been reported by others in experimental
mechanics [8, 9]. The performance of the DIC method was
further enhanced (1) by formulating its algorithm as an

G(x +u), g(X+U) Numerically distorted image (from the
initial image) or numerically restored
image (from the current image)

CF, CB,. . .. Various sum-of-squared differences
coefficients or the so-called L2
objective similarity functions

P;ΔP;p;Δp; eP;ΔeP;ep; Δep; etc. Parameters and their increments that
define the forward and backward
deformation mapping, transformation
matrices and displacement functions

W(X;P) Parameterized forward warp or
deformation mapping that
transforms the coordinates of a subset
of points of an initial image to the
coordinates of the corresponding
points of the current image

w(x;p) Parameterized backward warp or
deformation mapping that transforms
the coordinates of a subset of points of
the deformed image to the coordinates
of the corresponding points of the initial
image

U0,V0,UX,UY,VX,VY A six-parameter set for 2D forward affine
deformation mapping of a subset
(displacements and their gradients for a
2D forward displacement function)

u0, v0,ux,uy, vx, vy A six-parameter set for 2D backward
affine deformation mapping of a subset
(displacements and their gradients for a
2D backward displacement function)eX; eG eX� �

;eg eX� �
Coordinates and interpolated
greyscale of an intermediate
(numerically deformed or restored)
image between initial and current
images in a forward analysisex;eg exð Þ;eG exð Þ Coordinates and interpolated
greyscale of an intermediate image
(numerically restored or deformed)
between initial and current images in
a backward analysis

Φ P̂
� �

, w p̂ð Þ
Φ eP� �

, w ep� �
, etc.

Prior estimated parameter matrices for
linearized forward and backward
deformation mappings, and they
are assumed to be invertible in this work

Φ ΔeP� �
;Φ ΔP̂
� �

w Δep� �
, w Δp̂ð Þ, etc.

Parameter matrices for incremental
forward and backward deformation
mappings, respectively (to be solved
numerically in an iterative process)

F(P+DP),
w(p +Dp)

The updated parameter matrices
between the initial and current
images in forward and backward
analyses, respectively
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iterative cross-correlation problem and solving it by the
second-order Newton–Raphson (also called Newton or full
Newton) numerical solution method instead of the coarse-
fine search method used previously [10] and (2) by replacing
the bilinear interpolation with bi-cubic interpolation of
subpixel greyscales of deformed images [11]. Vendroux
and Knauss [4] further developed the DIC method by
formulating its algorithm as an iterative least-squares
(also called sum-of-squared differences or SSD) correlation
problem with a photometric bias correction term on image
greyscales. They applied the new algorithm along with the
first-order approximate Newton (also called Gauss–Newton
or quasi-Newton) method for submicron displacement
measurements using atomic force microscopy images.
Tong [5] showed that both cross-correlation and SSD
correlation DIC algorithms can be represented in a
normalisation form to eliminate the photometric gain
and bias, and they are actually equivalent (although the
first-order SSD algorithm is computationally more robust
and efficient). At present, research works and application
examples appeared in the experimental mechanics
literature use almost exclusively either one of the DIC
algorithms and associated numerical solution methods
with no or only minor variations [1–3].
Image analyses similar or even identical to DIC have also

been developed in parallel and extensively used in many
other fields such as computer vision, robotics, pattern
recognition, medical image analysis, experimental fluid
mechanics and so on. These image analysis methods are
instead called image registration, image alignment or image
matching [12–16], optical flow computation [17, 18], object
tracking or motion estimation [19–22], digital particle image
velocimetry (DPIV or PIV) [23, 24] and so on. Almost all
DPIV techniques use cross-correlation-based algorithms,
and they locate the correlation peak coarsely first by fast
Fourier transform in the frequency domain and then
determine the dense displacement field vectors at subpixel
accuracy by a certain peak-fit routine. On the other hand,
the iterative gradient-based Lucas–Kanade SSD image
registration algorithm [12] has been found to be one of
the most reliable optical flow methods carried out in the
spatial domain [18]. In addition to the original forward
additive Lucas–Kanade algorithm, many variations in the
algorithm formulation such as compositional, inverse
compositional, consistent and symmetric algorithms
have subsequently been developed for a wide range of
applications in computer vision and medical image
analysis [13–15, 21, 22, 25]. It turns out that the DIC
algorithms most often used in experimental mechanics as
described above are more or less equivalent to the sparse
optical flow version of the original so-called forward additive
Lucas–Kanade algorithm (which also accounts for affine
deformation and photometric gain and bias by Lucas and
Kanade [12]). A backward additive Lucas–Kanade DIC

algorithm has only occasionally been used for analysing
image sequences with growing cracks [26, 27] and has more
recently been shown to have no noise-induced bias when
the initial (reference) image is noise-free [28]. Many other
formulations of the DIC algorithms have rarely been
evaluated at all for possible materials testing and structural
monitoring applications. One of the major reasons is due
to different and sometimes confusing notations used in
formulating those non-classic algorithms in computer
vision and medial image analysis literature. In particular,
a clear definition of a frame of reference for various
relative displacements and deformation mappings
between images is often lacking as precision deformation
measurements themselves are normally not a primary
concern in those applications.

This paper aims to provide a systematic survey on the
formulation of existing DIC algorithms appeared in
experimental mechanics, computer visions, robotics and
medical image analysis literature. The purpose of this review
is to introduce the non-classic algorithms commonly
used in the other fields and their possible variants to
the researchers and users in experimental mechanics
community. In the second section, we use concise notations
consistent with the finite deformation kinematics analysis
in continuum mechanics to describe various Lucas–Kanade
SSD DIC analysis algorithms. An intermediate image is
introduced as a frame of reference to clarify the so-called
compositional as well as consistent and symmetric DIC
algorithms. It is hoped that such a unified presentation will
make these non-classic Lucas–Kanade DIC algorithms more
accessible to the practitioners interested in deformation
measurements, so some of these algorithms may be explored
as possible better alternatives for current or future deformation
measurement application needs. In particular, Lucas–Kanade
SSD DIC algorithms are described in details in terms of either
forward or backward deformation mapping direction and in
terms of either additive or compositional updating the
parameters of the deformation mapping function in an
iterative numerical solution process. Explicit examples about
the additive and compositional updating of deformation
parameters are given for affine deformationmapping. Additive
and compositional updating is also extended to the so-called
consistent or symmetric DIC algorithms.

As an example, we show in the third section how one can
use the Gauss–Newton method (out of many numerical
methods) to carry out the computational implementation
of forward additive, compositional and inverse com-
positional algorithms by obtaining closed form solution of
parameter increments of subset deformation for each
algorithm. We repeat the proof on the equivalency among
these algorithms analytically using the new notations
proposed in this paper for the case of 1D and 2D affine warps.
Examples of how to implement each algorithm are further
detailed by specifying the central difference computation
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of spatial gradients of greyscales and the linear interpolation
of greyscales of images at non-integral pixel positions for
one-dimensional affine deformation. In particular, the
computational efficiency of the inverse compositional
algorithm is pointed out. Both the advantage of using the
new notations and associated schematics in describing non-
classic Lucas–Kanade DIC algorithms and possible benefits
of using one of these non-classic Lucas–Kanade algorithms
for deformation measurement applications are discussed
in the fourth section. Additional research needs for
systematically assessing the relative merits and limitations of
these algorithms for a given deformation measurement
scenario are also briefly addressed. The paper concludes with
a summary of main results of the paper in the fifth section.

A Continuum Mechanics Formulation of Digital
Image Correlation Algorithms
Kinematics of image deformation and digital image
correlation analysis

Consider an initial or original image with a greyscale level G
(X) and its corresponding current or deformed image with a
greyscale level g(x). A subset of n points of the initial image
with position vectors X and the corresponding points of the
current image with position vectors x are related by
displacement field vectors U(X), namely, x=W(X) =X+U
(X). The displacements can be estimated in a DIC analysis
by minimising an SSD coefficient CF [12]

CF Uð Þ ¼
Xn
i¼1

eg Xið Þ � G Xið Þ½ �2 ¼
Xn
i¼1

g Xi þ Uð Þ � G Xið Þ½ �2: (1)

The analysis algorithm in Equation (1) is called forward
(deformation mapping) DIC (thus, the subscript ‘F’ for the
SSD coefficient) as the resulting displacements U(X) map
the subset of points of the initial image forward to the
corresponding points of the current image. That is, the
initial image is used as a frame of reference in displacement
measurements of points between these two images, and the
image eg Xð Þ in Equation (1) should be regarded as a copy of
the current image numerically restored back to its initial state.
As position vectors X are usually selected to be integer-
valued (points with integral pixel coordinates of the initial
image), greyscale values of the restored image eg Xð Þ are
normally obtained by interpolating the spatially discrete
greyscale values of the current image as g(X+U).
On the other hand, an analysis using the backward

(deformation mapping) DIC algorithm is to estimate
displacement vectors u(x) by minimising the following
SSD coefficient CB

CB uð Þ ¼
Xn
i¼1

eG xið Þ � g xið Þ
h i2

¼
Xn
i¼1

G xi þ uð Þ � g xið Þ½ �2; (2)

where u(x) are displacements that map the subset of
points of the current image back to the corresponding
points of the initial image, namely X =w(x) =x +u(x).
That is, the current image is used as a frame of reference
in measuring the displacements u(x) of points in the
subset between these two images. Similarly, the imageeG xð Þ is a copy of the initial image numerically distorted
towards to the current state and is again normally
obtained by interpolating the spatially discrete greyscale
values of the initial image as G(x+u). Table 1 summarises
the graphic definition of relative displacements and restored
or distorted images in these two and other forward and
backward DIC algorithms in terms of specific frames of
reference.

The above forward deformation W(X) and backward
deformation w(x) of an image subset between an initial
and its current images may be represented in terms of a
differentiable continuous function with respect to a set of
scalar parameters P and p as [15, 22]

x ¼ WðX;PÞ ¼ Xþ UðX;PÞ; and X ¼ w x;pð Þ ¼ xþ uðx;pÞ:
(3a)

U(X;P) and u(x;p) are the parameterized forward and
backward displacement field functions, respectively. In the
computer vision literature, W(X;P) and w(x;p) are
commonly called parameterized forward and backward
warps (by the way, an initial image and its current image
are called, respectively, as ‘template’ and ‘input’ images)
[15]. It is possible for some deformation functions to have
the following form

W X;Pð Þ ¼ Φ Pð ÞX; and w x;pð Þ ¼ w pð Þx; (3b)

where F(P) and w(p) in Equation (3b) will be called
transformation matrices or deformation parameter matrices
between images [22]. In this work, it is assumed that the
deformation of an image subset can always be described by a
linear parameterized deformation mapping with a parameter
matrix defined as in Equation (3b). In particular, a six-
parameter affine displacement function is just such a
deformation mapping and is often used to model a
homogenous deformation field of a subset between the initial
imageG(X) =G(X,Y) and the current image g(x) = g(x,y). It has
the following form for both forward and backward
deformation analyses, respectively, as

x ¼ X þ U0 þ UXX þ UYY ;

y ¼ Y þ V0 þ VXX þ VYY ;

�
and

X ¼ xþ u0 þ uxxþ uyy;

y ¼ yþ v0 þ vxxþ vyy;

�
(4)

where parameters (U0,V0) and (u0,v0) are horizontal
and vertical displacement components and parameters
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Table 1: Summary of forward/backward and additive/compositional DIC algorithms

Forward DIC algorithms Backwards DIC algorithms

CF Uð Þ ¼
Xn

i¼1

g Xi þUð Þ � G Xið Þ½ �2 CB uð Þ ¼
Xn
i¼1

G xi þ uð Þ � g xið Þ½ �2

CFAðΔPÞ ¼
Xn
i¼1

g Xi þ U Xi;PþΔPð Þð Þ � G Xið Þ½ �2 CBAðΔpÞ ¼
Xn
i¼1

G xi þ u xi; pþΔpð Þð Þ � g xið Þ½ �2

CFC ΔP̂
� � ¼Xn

i¼1

eg Xi þ ΔÛ Xi;ΔP̂
� �� ��G Xið Þ� �2

CBC Δp̂ð Þ ¼
Xn
i¼1

eG xi þΔû xi;Δp̂ð Þð Þ � g xið Þ
h i2

CFIC Δepð Þ ¼
Xn

i¼1

G eXi þ Δeu eXi;Δep� �� �
� g eXi þ eU� �h i2

CBIC ΔeP� �
¼
Xn

i¼1

g exi þΔeU exi;ΔeP� �� �
�G exi þ euð Þ

h i2
DIC, digital image correlation.
Letters with a subscripted index ‘i’ enclosed in a circle are pixel coordinates of points in various images as indicated by a thin vertical
line. Coordinates having indexes of ‘i�1’, ‘i’ and ‘i+1’ are points of the frame of reference with integral pixel coordinates used in an
analysis. A thick vertical line with arrows at both ends indicates the pixel point on the frame of the reference where the image
correlation analysis is being carried out.
An arrow with a single thick horizontal line indicates the displacement vector direction: a forward displacement with the arrow
pointing to the right and a backward displacement with the arrow pointing to the left. Upper or lower case letters are, respectively,
used to describe the forward or backward displacements and their parameters. An arrow with two thin horizontal lines indicates the
numerically distorted (the arrow pointing to the right) or restored (the arrow pointing to the left) images from the source to target
images. The displacements are, in general, non-integral in pixels.
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(UX,UY,VX,VY) and (ux,uy,vx,vy) are corresponding dis-
placement gradients, respectively. The above equations can
be written in a matrix form as [15]

x

y

	 

¼ 1þ UX UY U0

VX 1þ VY V0

	 
 X

Y

1

0B@
1CA and

X

Y

	 

¼ 1þ ux uy u0

vx 1þ vY v0

	 
 x

y

1

0B@
1CA;

(5a)

or in terms of homogenous coordinates as [22]

x

y

1

0B@
1CA ¼

1þ UX UY U0

VX 1þ VY V0

0 0 1

0B@
1CA X

Y

1

0B@
1CA and

X

Y

1

0B@
1CA ¼

1þ ux uy u0

vx 1þ vY v0

0 0 1

0B@
1CA x

y

1

0B@
1CA:

(5b)

The four terms containing displacement gradients in the
affine parameter matrices above form the so-called 2D
deformation gradient tensor. It is used extensively in defining
various strain and stress measures and in formulating
constitutive equations of materials in continuummechanics
[36]. The determinant of the deformation gradient tensor is
the ratio of volumes (3D) or areas (2D) of a material element
after and before the deformation. For any physically
admissible continuous deformation, the ratio of subset areas
in both initial and current images must be positive.
Therefore, all physically admissible affine deformation must
satisfy the condition D= (1+UX)(1 +VY)�UYVX>0, where
D is the determinant of the 2D deformation gradient tensor.
It should be pointed out that the inverse of an affine
parameter matrix with P= (U0,V0,UX,UY,VX,VY)

T can be
readily obtained, for example:

Φ Pð Þ ¼
1þ UX UY U0

VX 1þ VY V0

0 0 1

0B@
1CA; (6a)

Φ Pð Þ�1 ¼ 1
D

1þ VY �UY UYV0 � VYU0 � U0

�VX 1þ UX VXU0 � UXV0 � V0

0 0 1þ UXð Þ 1þ VYð Þ � UYVX

0B@
1CA:

(6b)

So the condition D>0 for physically admissible affine
deformation also guarantees that the affine parameter
matrices F(P) and w(p) are invertible. As expected, w(p) =
F(P)�1 in this case. For rigid-body translations, p=�P.
For P!0, F(P)�1�F(�P) to the first-order approximation
in P [15].

Forward and backward additive digital image
correlation algorithms

When the SSD coefficient defined in either Equation (1) or (2)
is a nonlinear function of the parameters of the displacement
field function given in Equation (3), the numerical solution
process of minimising the SSD coefficient will be an iterative
one in which the parameters are updated incrementally. Even
in a linear analysis, an incremental updating DIC algorithm is
also useful for computing subpixel displacements with poor
prior estimates [28, 29]. Consequently, the SSD coefficients
given in Equation (1) or (2) may be rewritten, respectively, as

CFA ΔPð Þ ¼
Xn
i¼1

g Xi þ U Xi;Pþ ΔPð Þð Þ � G Xið Þ½ �2; (7)

and

CBA Δpð Þ ¼
Xn
i¼1

G xi þ u xi;pþ Δpð Þð Þ � g xið Þ½ �2; (8)

where P and p are prior estimated parameters of the forward
and backward displacement fields of the image subset, and DP
and Dp are their incremental updates to be solved numerically
by minimising the SSD coefficients. They are analogous to
the predictor–corrector pairs in any iterative numerical solution
algorithm. The displacement functions are simply updated
as U(X;P+DP) and u(x;p+Dp) at each iteration step.
The numerical solution process continues until the
incremental displacements DU=U(X;P+DP)�U(X;P) and
Du=u(x;p+Dp)�u(x;p) becomes vanishingly small in each
analysis. Because the incremental updates of the deformation
parameters are explicitly solved and then added directly to the
prior estimates at each iteration step, the algorithms given in
Equations (7) and (8) are called forward additive DIC (the classic
Lucas–Kanade algorithm [12, 15]) and backward additive DIC,
respectively. For example, the updated affine parameter matrix
for the forward additive DIC algorithm is given simply as

Φ Pþ ΔPð Þ ¼
1þ UX þ ΔUX UY þ ΔUY U0 þ ΔU0

VX þ ΔVX 1þ VY þ ΔVY V0 þ ΔV0

0 0 1

0B@
1CA:

(9)

Forward and backward compositional digital image
correlation algorithms

A possible alternative to the additive updatingDIC algorithms
is the so-called compositional updating algorithms, for
example [15, 22]:

CFC ΔP̂
� � ¼Xn

i¼1

eg Xi þ ΔÛ Xi;ΔP̂
� �� �� G Xið Þ� �2

;

eg eXi

� �
¼ g eXi þ eU eXi; eP� �� �

;

(10)

where eU eX; eP� �
is the prior estimated forward displacement

field between an intermediate image eg eX� �
and the current
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image g(x), and ΔÛ X;ΔP̂
� �

is the incremental forward
displacement field between the initial image G(X) and the
intermediate image eg eX� �

, namely

x ¼ eXþeU eX; eP� �
¼ Φ eP� �eX;eX ¼ Xþ ΔÛ X;ΔP̂

� � ¼ Φ ΔP̂
� �

X:

(11a)

So the forward deformation parameter matrix from the
initial image to the current image can be computed as the
composition of two successive warps (i.e. multiplication of
their parameter matrices)

Φ Pþ ΔPð Þ ¼ Φ eP� �
Φ ΔP̂
� �

; where x ¼ Φ Pþ ΔPð ÞX: (11b)

It is noted that parameters without and with an accent of
either ‘tilde’ or ‘hat’ are used to account for three different
relative displacements among three image pairs (see Table 1).
The way of updating deformation parameters as given in
Equation (11b) is termed compositional in the computer
vision literature [15] or composite mapping in the medical
image analysis literature [16] as the estimated relative

displacements eU and the increments Δ Û are measured
according to two different frames of reference. The
algorithm given in Equation (10) will thus be called
the forward compositional DIC algorithm. To continue the

next solution step, the parameters eP are further updated to

Pþ ΔP ! ePþ ΔeP until ΔÛ ! 0 (so ΔP̂ ! 0 and eX ! X as
well at the end of the iterative solution process). As an
example, the updated affine parameter matrix for the
forward compositional DIC algorithm is given as

Φ Pþ ΔPð Þ ¼ Φ eP� �
Φ ΔP̂
� �

¼
1þ eUX eUY eU0eVX 1þ eVY eV0

0 0 1

0B@
1CA 1þ ΔÛX ΔÛY ΔÛ 0

ΔV̂ X 1þ ΔV̂ Y ΔV̂ 0

0 0 1

0B@
1CA:

(12)

For rigid body translations with P= (U0,V0), Equations (9)
and (12) are however identical. So there is no difference
at all between the compositional and additive updating
of rigid body translation parameters in these two
algorithms.
For the completeness of the discussion, the equations for

the backward compositional DIC algorithm are also given in
the following:

CBC Δp̂ð Þ ¼
Xn
i¼1

eG xi þ Δû xi;Δp̂ð Þð Þ � g xið Þ
h i2

;

eG exið Þ ¼ G exi þ eu exi; epð Þð Þ;

(13)

where (see Table 1 for details)

X ¼ exþeu ex; epð Þ¼w epð Þex; andex ¼ xþ Δû x;Δp̂ð Þ ¼ w Δp̂ð Þx;
(14a)

w pþ Δpð Þ ¼ w epð Þw Δp̂ð Þ; so X ¼ w pþ Δpð Þx: (14b)

The backward compositional image correlation analysis
estimates the parameter increments Δp̂ of a parameter
matrix between the current image g xð Þ (as a frame of

reference) and an intermediate image eG exð Þ which itself is
numerically distorted towards the current image g(x) from
the initial image G(X) based on the prior estimated
backward displacement field eu ex;epð Þ.

Inverse compositional digital image correlation algorithms

Both the prior estimated displacements and the corrective
increments of displacements are in the same direction
(either forward or backward) in the compositional
algorithms discussed so far (see Table 1). When their
deformation mapping directions are different, another
variant of compositional algorithms can be formulated.
The SSD coefficient for the forward deformation mapping with
inverse compositional updating DIC algorithm (or more
commonly known as the inverse compositional algorithm
in the computer vision literature) is given as

CFIC Δepð Þ ¼
Xn
i¼1

G eXi þ Δeu� �
� eg eXi

� �h i2
¼
Xn
i¼1

G eXi þ Δeu eXi;Δep� �� �
� g eXi þ eU eXi; eP� �� �h i2

;

(15)

where the intermediate image eg eX� �
is used as a frame of

reference for measuring both the prior estimated forward
displacement eU eX;eP� �

towards the current image g(x) and
the backward displacement increment Δeu eXi;Δep� �

towards
the initial image G(X), namely (see Table 1)

X ¼ eXþ Δeu eX;Δep� �
¼ w Δepð ÞeX; and

x ¼ eXþ eU eX;eP� �
¼ Φ eP� �eX:

(16a)

The updated parameter matrix from the initial image to
the current image is computed as (assuming the incremental
parameter matrix w Δepð Þ is invertible)

Φ Pþ ΔPð Þ ¼ Φ eP� �
w Δepð Þ�1; so x ¼ Φ Pþ ΔPð ÞX: (16b)

As the inverted incremental parameter matrix w Δepð Þ�1

appears in Equation (16b), the algorithm defined in
Equation (15) is called inverse compositional by Baker and

Matthews [15]. It is noted that the image eg eX� �
¼

g eXþ eU eX; eP� �� �
in Equation (15) should be regarded as an
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image numerically restored from the current image towards

the intermediate image frame with coordinates eX, and the

image G eXþΔeu� �
should be regarded as an image

numerically distorted from the initial image towards the
same intermediate image frame. The forward affine
parameter matrix between the initial image and the current
image for the inverse compositional DIC algorithm should
be updated accordingly as

Φ Pþ ΔPð Þ ¼ Φ eP� �
w Δepð Þ�1

¼
1þ eUX eUY eU0eVX 1þ eVY eV0

0 0 1

0B@
1CA 1þ ΔeuX ΔeuY Δeu0

ΔevX 1þ ΔevY Δev0
0 0 1

0B@
1CA

�1

:

(17)

It is noted that the inverted incremental affine
parameter matrix in Equation (17) can be obtained readily
according to Equation (6b) for physically admissible affine
deformation.
The backward version of the inverse compositional

algorithm can also be formulated, and its SSD coefficient is
given as

CBIC ΔeP� �
¼
Xn
i¼1

g exi þΔeU� �
� eG exið Þ

h i2
¼
Xn
i¼1

g exi þΔeU exi;ΔeP� �� �
� G exi þ eu exi; epð Þð Þ

h i2
(18)

where

X ¼ exþ eu ex;epð Þ ¼ w epð Þex; and

x ¼ exþΔeU ex;ΔeP� �
¼ Φ ΔeP� �ex;

(19a)

and the backward deformation parameter matrix is updated
as follows (assuming the incremental parameter matrix
Φ ΔeP� �

is invertible)

w pþ Δpð Þ ¼ w epð ÞΦ ΔeP� ��1
; so X ¼ w pþ Δpð Þx: (19b)

It is noted that the image eG exð Þ ¼ G exþ eu ex;epð Þð Þ in
Equation (18) should be regarded as an image numerically
distorted towards the intermediate image frame ex from the
initial imagewith the prior estimated backward displacementseu ex;epð Þ , and the image g exþΔeU ex;ΔeP� �� �

is an image

numerically restored towards the same intermediate image
frame from the current image with forward displacement

increments ΔeU ex;ΔeP� �
. At the end of an iterative solution

process using the inverse compositional algorithms,

one has eX ! X (integral-pixel points used in the
intermediate image eventually coincide with those in the
initial image within the limit of residual displacement
errors) and ex ! x (integral-pixel points used in the
intermediate image eventually coincide with those in the
current image within the limit of residual displacement

errors), respectively. The intermediate image either eg eX� �
in Equation (15) or eG exð Þ in Equation (18) is not fixed with
respect to either the initial or current image during the
iterative numerical solution process. The inverse
compositional algorithms are thus different from the
previous additive or compositional DIC algorithms given
in Equations (7), (8), (10) and (13), where the fixed and
integer-valued coordinates in either initial or current
images are used for each point of the image subset.

Consistent digital image correlation algorithms

The so-called consistent (or inverse consistent) DIC
algorithms appeared in the literature [14, 16, 20] can be
considered as a joint forward and backward DIC analysis
(Table 2). The SSD coefficient for a consistent additive
DIC algorithm may be given by combining Equations (7)
and (8) as

CCA ΔP;Δpð Þ ¼
Xn
i¼1

g Xi þ U Xi;Pþ ΔPð Þð Þ � G Xið Þ½ �2

þ
Xn
i¼1

G xi þ u xi; pþ Δpð Þð Þ � g xið Þ½ �2; (20)

where a consistency condition is imposed for the invertible
forward and backward deformation parameter matrices as
(I is the identity or unit matrix)

w pð ÞΦ Pð Þ ¼ I; w pþ Δpð ÞΦ Pþ ΔPð Þ ¼ I; or

w pð Þ ¼ Φ Pð Þ�1; w pþ Δpð Þ ¼ Φ Pþ ΔPð Þ�1;

(21a)

where

x ¼ Xþ U X;Pþ ΔPð Þ ¼ Φ Pþ ΔPð ÞX; and

X ¼ xþ u x;pþ Δpð Þ ¼ w pþ Δpð Þx:
(21b)

Parameters p and Dp of the backward displacements in
Equation (20) are not independent but directly related to
parameters P and DP of the forward displacements via
Equation (21a), that is CCA(DP;Dp(DP))�CCA(DP). This
notation for the SSD coefficients will be used for
both consistent and symmetric algorithms in the following.
For rigid-body translations, p=�P and Dp=�DP. For
an invertible affine deformation, one can readily obtain
p= (u0,v0,ux,uy,vx,vy)

T fromP= (U0,V0,UX,UY,VX,VY)
T according

to Equation (6b) as
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The SSD coefficient for a consistent compositional DIC
algorithmmay be given by combining Equations (10) and (13)

CCC ΔP̂;Δp̂
� � ¼Xn

i¼1

eg Xi þ ΔÛ Xi;ΔP̂
� �� �� G Xið Þ� �2

þ
Xn
i¼1

eG xi þ Δû xi;Δp̂ð Þð Þ � g xið Þ
h i2

; (23)

where the intermediate images eg ~X
� � ¼ g ~Xi þ ~U ~Xi;~P

� �� �
andeG exð Þ ¼ G exi þ eu exi;epð Þð Þare numerically restored and distorted

images based on the prior estimated forward and backward
displacements, respectively, see Equations (11a), (11b),
(14a) and (14b) about details of their definitions and
compositional updating. To make this algorithm consistent,
deformation parameter matrices and their increments are
again assumed to be invertible and

ux uy u0

vx vy v0

	 

¼ 1

1þ UXð Þ 1þ VYð Þ � UYVX

1þ VY �UY UYV0 � VYU0 � U0

�VX 1þ UX VXU0 � UXV0 � V0

	 

: (22)

Table 2: Summary of consistent or symmetric additive and compositional DIC algorithms

CCA ¼
Xn

i¼1

g Xi þ Uð Þ � G Xið Þ½ �2 þ
Xn
i¼1

G xi þ uð Þ � g xið Þ½ �2
CCC ¼

Xn

i¼1

eg Xi þ ΔÛ
� �� G Xið Þ� �2 þXn

i¼1

eG xi þ Δûð Þ � g xið Þ
h i2

Consistent Inverse Compositional DIC⇒

Joint Forward&Backward Inverse Compositional DIC

Consistent Mixed Compositional DIC⇒

Joint Forward and Inverse Compositional DIC

CCIC ¼
Xn

i¼1

G eXi þ Δû
� �

� g eXi þ eU� �h i2
þ
Xn
i¼1

g exi þΔÛ
� ��G exi þ euð Þ� �2

CCMC ¼
Xn
i¼1

G eXi þΔeu� �
� g eXi þU
� �h i2

þ
Xn
i¼1

eg Xi þ ΔÛ
� �� G Xið Þ� �2

CSA ¼
Xn
i¼1

g Xi þ U Xi;Pþ ΔP
� �� �� G Xi þ u Xi; pþ Δp

� �� �� �2
CSC ¼

Xn

i¼1

eG Xþ Δu X;Δp̂
� �� �� eg Xþ ΔU X;ΔP̂

� �� �h i2
DIC, digital image correlation.
Letters with a subscripted index ‘i’ enclosed in a circle are pixel coordinates of points in various images as indicated by a thin vertical
line. Coordinates having indexes of ‘i�1’, ‘i’ and ‘i+1’ are points of the frame of reference with integral pixel coordinates used in an
analysis. A thick vertical line with arrows at both ends indicates the pixel point on the frame of the reference where the image
correlation analysis is being carried out. For consistent algorithms, the analysis is carried out at two different pixel points
simultaneously (only one of them has integral-pixel coordinates though).
An arrow with a single thick horizontal line indicates the displacement vector direction: a forward displacement with the arrow
pointing to the right and a backward displacement with the arrow pointing to the left. Upper or lower case letters are, respectively,
used to describe the forward or backward displacements and their parameters. An arrow with two thin horizontal lines indicates the
numerically distorted (the arrow pointing to the right) or restored (the arrow pointing to the left) images from the source to target
images. The displacements are, in general, non-integral in pixels.
Illustrations for the consistent inverse and mixed compositional algorithms are omitted as they are basically the combination of
either forward and backward inverse compositional algorithms or forward compositional and backward inverse compositional
algorithms shown in Table 1.
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w pþ Δpð ÞΦ Pþ ΔPð Þ ¼ I;
Φ Pþ ΔPð Þ ¼ Φ ePð ÞΦ ΔP̂

� �
; w pþ Δpð Þ ¼ w epð Þw Δp̂ð Þ; (24a)

w ~pð Þ ¼ Φ ~P
� ��1

; and w Δp̂ð Þ ¼ Φ ~P
� �

Φ ΔP̂
� ��1

Φ ~P
� ��1

: (24b)
The SSD coefficient for a consistent inverse compositional

DIC algorithm may be given by combining both forward
(Equation 15) and backward (Equation 18) inverse
compositional algorithms

CCIC ΔP̂;Δp̂
� � ¼Xn

i¼1

G ~Xi þ Δ û ~Xi;Δp̂
� �� �� g ~Xi þ ~U

� �� �2
þ
Xn
i¼1

g ~xi þ Δ Û exi;ΔP̂� �� �� G exi þ euð Þ� �2
; (25)

where eX are coordinates of the intermediate image in the
forward analysis (first term) and ex are coordinates of the
intermediate image in the backward analysis (the second
term). However, the incremental displacements Δû X̂;Δp̂

� �
and ΔÛ ex;ΔP̂� �

in each analysis are in the opposite directions
to eU eX; eP� �

and eu ex; epð Þ, respectively. The consistent condition
should be imposedonboth forward andbackwarddeformation
parameter matrices after compositional updating, namely
(see Equations (16b) and (19b))

w pþ Δpð ÞΦ Pþ ΔPð Þ ¼ I;
Φ Pþ ΔPð Þ ¼ Φ ~P

� �
w Δp̂ð Þ�1;

w pþ Δpð Þ ¼ w epð ÞΦ ΔP̂
� ��1

; (26a)

so ep and ΔP̂ are related to ~P and Δp̂ via

w epð Þ ¼ Φ ~P
� ��1

; or Φ ΔP̂
� � ¼ Φ ~P

� �
w Δp̂ð Þ�1Φ ~P

� ��1
: (26b)

Finally, a consistent mixed compositional DIC algorithm
may also be considered and its SSD coefficient is given by
combining both forward compositional (Equation 10) and
forward inverse compositional (Equation 18) algorithms

CCMC ΔP̂;Δp̂
� � ¼Xn

i¼1

eg Xi þ ΔÛ Xi;ΔP̂
� �� �� G Xið Þ� �2

þ
Xn
i¼1

G ~Xi þ Δeu ~Xi;Δp̂
� �� �� g ~Xi þ ~U

� �� �2
;

(27)
with a consistent condition imposed on both forward
deformation parameter matrices after compositional and
inverse compositional updating as

Φ Pþ ΔPð Þ ¼ Φ ~P
� �

w Δp̂ð Þ�1 ¼ Φ ~P
� �

Φ ΔP̂
� �

; (28a)

where ~P is the same for both terms in Equation (27) and Δp̂
is related to ΔP̂ via

w Δp̂ð Þ ¼ Φ ΔP̂
� ��1

: (28b)

Symmetric digital image correlation algorithms

The so-called symmetric image correlation algorithms have
also been proposed in the literature [13, 16, 30]. The SSD
coefficient for a symmetric additive DIC algorithm has the
following form

CSA ΔP;Δp
� � ¼Xn

i¼1

½g Xi þ U Xi;Pþ ΔP
� �� �

�G Xi þ u Xi; pþ Δp
� �� ��2;

(29)

where g Xþ U
� �

is a numerically restored image from the
current image, G Xþ u

� �
is a numerically distorted image

from the initial image and X are integer-valued coordinates
associated with an intermediate image (see Table 2). In
addition, the following conditions are imposed on the
relative forward and backward deformation parameter
matrices as

w pð ÞΦ P
� � ¼ I; w pþ Δpð ÞΦ Pþ ΔP

� � ¼ I; or

w pð Þ ¼ Φ P
� ��1

; w pþ Δpð Þ ¼ Φ Pþ ΔP
� ��1

;

(30a)

where

x ¼ Xþ U X;Pþ ΔP
� � ¼ Φ Pþ ΔP

� �
X;

X ¼ Xþ u X; pþ Δp
� � ¼ w pþ Δpð ÞX;

(30b)

Φ Pþ ΔPð Þ ¼ Φ Pþ ΔP
� �

w pþ Δpð Þ�1

¼ Φ Pþ ΔP
� �2

; so x ¼ Φ Pþ ΔPð ÞX: (30c)

Images g Xþ U
� �

and G Xþ u
� �

in the analysis are thus
exactly ‘half-way’ between the initial and current images,
and the coordinates X belong to a special fixed intermediate
image frame, namely, the symmetric image frame. Parameters
p and Δp of the backward displacement field in Equation (29)
are again not independent but directly related to
parameters P and ΔP of the forward displacement field
via Equation (30a). For rigid-body translations, p ¼ �P

and Δp ¼ �ΔP , so P ¼ 2P and ΔP ¼ 2ΔP . According to
Equation (22), one can analytically obtain parameters of

the backward affine deformation p ¼ u0; v0; ux; uy; vx; vy
� �T

from the parameters of the forward affine deformation

P ¼ U0;V0;UX ;UY ;VX ;VY

� �T . It is noted that even though
the deformation parameters are updated additively in
the iterative solution process per Equation (30b), the
resulting forward transformation Φ(P +ΔP) between the
initial and current images is the composition of two
successive (and identical) warps as per Equation (30c).
Furthermore, such a deformation parameter matrix is
now applied over a set of non-integral pixel points X of
the initial image (as the coordinates of the corresponding
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points X of the intermediate image are integer-valued in
the analysis, see Equations 29 and 30b).
Similarly, the SSD coefficient for a symmetric

compositional DIC algorithm has the following form

CSC ΔP̂;Δp̂
� � ¼Xn

i¼1

eG Xþ Δû X;Δp̂
� �� �� eg Xþ ΔÛ X;ΔP̂

� �� �h i2
;

(31)

where eG Xþ Δû
� �

is a numerically distorted image from one
intermediate image eG exð Þ towards the symmetric image frame
with the coordinates X and eg Xþ ΔÛ

� �
is a numerically

restored image from another intermediate image eg ~X
� �

towards the same symmetric image frame. Furthermore,
the intermediate image eG exð Þ ¼ G exþ eu ex; epð Þð Þ is numerically
distorted from the initial image G(X) with displacementseu ex;epð Þ , and the intermediate image eg ~X

� � ¼ g ~Xþ ~U ~X;~P
� �� �

is numerically restored from the current image g(x)
with displacements ~U ~X;~P

� �
(see Table 2). The relative

displacements among these six images are summarised in
the following:

x ¼ ~Xþ ~U ~X; ~P
� � ¼ Φ ~P

� �
~X;

~X ¼ Xþ ΔÛ X;ΔP̂
� � ¼ Φ ΔP̂

� �
X;

(32a)

x ¼ Φ Pþ ΔP
� �

X; Φ Pþ ΔP
� � ¼ Φ ~P

� �
Φ ΔP̂
� �

; (32b)

X ¼ exþ eu ex;epð Þ ¼ w epð Þex;ex ¼ Xþ Δû X;Δp̂
� � ¼ w Δp̂ð ÞeX;

(32c)

X ¼ w pþ Δpð ÞeX; w pþ Δpð Þ ¼ w epð Þw Δp̂ð Þ: (32d)

Again, the symmetric condition similar to Equation (30a)
is imposed on Φ Pþ ΔP

� �
and w pþ Δpð Þ , and the forward

deformation parameter matrixF(P+ΔP) between the initial
and current images is computed per Equation (30c).
Consequently, parameters ep and Δp̂ of the backward
displacements and their increments are again not

independent but directly related to parameters ~P and ΔP̂ of
the forward displacements and their increments as

w p̂ð Þ ¼ Φ ~P
� ��1

; w Δp̂ð Þ ¼ Φ ~P
� �

Φ ΔP̂
� ��1

Φ ~P
� ��1

: (33)

Computational Implementation of Digital Image
Correlation Algorithms: An Example
As the formulation of various DIC algorithms is presented
for the first time using the new but very concise notations
in this paper, we show in this section how some of these
algorithms may be implemented computationally by
specifying a particular numerical method (Gauss–Newton),
subset deformation model (1D and 2D affine), spatial gradient

computation routine (central difference), and subpixel
interpolation scheme (linear). Just like there are many types
of DIC algorithms available, there are many choices for each
of these aspects in a DIC analysis as well depending on one’s
requirement for efficiency, robustness and accuracy.
Although a detailed comparative evaluation of their relative
merits is beyond the scope of this paper, it is hoped that the
examples shown in this section can provide as a starting
point for anyone interested in carrying out such a study in
the future.

Numerical solutions using the Gauss–Newton gradient
decent method

The correlation coefficients of Lucas–Kanade DIC
algorithms described above all have a similar form in terms
of the SSD in greyscales between two digital images at the
same frame of reference. The displacement parameters
appeared in these coefficients can be solved iteratively by a
nonlinear gradient-decent method for minimising these
SSD coefficients. In this section, the so-called Gauss–
Newton or quasi-Newton method will be applied to the
additive and compositional DIC algorithms listed in Table 1;
as it is shown, such a method has an overall excellent
performance [15]. For the sake of brevity, detailed
derivations of the closed form solutions will be provided
only for the forward versions of the iterative algorithms list
in Table 1. Results for the backward versions as well as for
consistent and symmetric versions can be obtained in a
similar way.

Using a first-order Taylor expansion of the numerically
restored image g(X+U(X;P+DP)) in the forward additive
SSD coefficient of Equation (7) about the parameter
increments DP, one has

g Xþ U X;Pþ ΔPð Þð Þ � g Xþ U X;Pð Þð Þ
þ @g Xþ U X;Pð Þð Þ

@P
ΔP

¼ g Xþ U X;Pð Þð Þ þ J X;Pð ÞΔP; (34a)

where the Jacobian vector J(X;P) at each point of the image
subset is computed at DP�0 from the current image g(x) = g
(x,y) using the chain rule as

J X;Pð Þ � @g

@P
¼ @g

@x
@x X;Pð Þ

@P
¼ @g

@x
@U X;Pð Þ

@P
¼ gx Xþ Uð ÞUP X;Pð Þ; gx Xþ Uð Þ ¼ gx; gy

� �
: (34b)

As an example, P= (U0,V0,UX,UY,VX,VY)
T and ΔP= (ΔU0,

ΔV0,ΔUX,ΔUY,ΔVX,ΔVY)
T for the forward affine deformation

as given by Equation (4). So gradients of the forward
displacement function UP(X;P) and the components of the
corresponding Jacobian vector J(X;P) are respectively
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UP X;Pð Þ ¼ UP Xð Þ ¼
1 0 X

0 1 0

0 Y 0

X 0 Y

 !
; (35a)

J X;Pð Þ ¼ gx Xþ Uð ÞUPðX;PÞ

¼ gx; gy
� � 1 0 X

0 1 0

0 Y 0

X 0 Y

 !

¼ gx; gy;Xgx;Xgy;Ygx; Ygy
� �

:

(35b)

Minimization of the approximate forward additive
SSD coefficient (differentiating the SSD coefficient with respect
to DP and setting the result to zero) leads to a closed
form solution:

@CFA ΔPð Þ
@ ΔPð Þ ¼ 0 :

ΔP ¼ H�1
Xn
i¼1

G Xið Þ � g Xi þ UðXi;PÞð Þ½ �J Xi;Pð ÞT ;

H Pð Þ ¼
Xn
i¼1

J Xi;Pð ÞTJ X;Pð Þ;

(36)

where H(P) is the Hessian matrix depending on the prior
estimated displacement parameters P. Both greyscales of
the restored image g(X+U) and their gradients gx(X+U) in
Equations (35b) and (36) have to be evaluated at the non-
integral pixel locations X+U by a bilinear or other higher-
order interpolation scheme.
Similarly, a first-order Taylor expansion of the

numerically restored imageeg Xþ ΔÛ X;ΔP̂
� �� �

in the forward
compositional SSD coefficient of Equation (10) about the

parameter increments ΔP̂ leads to

eg Xþ ΔÛ X;ΔP̂
� �� � � eg Xð Þ þ @eg Xþ ΔÛ X;ΔP̂

� �� �
@ ΔP̂
� � ΔP̂

¼ g Xþ ~U X; ~P
� �� �

þ~J X; ~P
� �

ΔP̂; (37a)

where the Jacobian vector ~J X; ~P
� �

is computed at ΔP̂ � 0
using the chain rule as

eJ X; eP� �
� @eg

@ ΔP̂
� �¼ @eg

@ eX @ eX
@ ΔP̂
� � ¼ @g

@x
@x

@ eX @ eX
@ ΔP̂
� �

¼ @g

@x
ðIþ @ eU

@ eXÞ @ΔÛ

@ ΔP̂
� � ;

(37b)

or

eJ X; eP� �
¼

@g Xþ eU X; eP� �� �
@x

Iþ
@eU X; eP� �

@eX
24 358<:

9=; @ ΔÛ X;ΔP̂
� �� �

@ ΔP̂
� �

¼ gx Xþ eU� �
Iþ eUeX� �n o

ΔÛΔP̂ Xð Þ:
(37c)

For the affine deformation given by Equation (4), one has

Iþ eUeX ¼ Iþ
@eU X; eP� �

@eX ¼ 1þ eUX eUYeVX 1þ eVY

 !
;

ΔÛΔP̂ ¼ @ΔÛ X;ΔP̂
� �

@ ΔP̂
� � ¼

1 0 X

0 1 0

0 Y 0

X 0 Y

 !
;

(38a)

eJ X; eP� �
¼ gx; gy
� � 1þ eUX eUYeVX 1þ eVY

 !
1 0 X

0 1 0

0 Y 0

X 0 Y

 !
:

(38b)

Minimization of the approximate forward compositional
SSD coefficient (differentiating the SSD coefficient with

respect to ΔP̂ and setting the result to zero) leads to a closed
form solution:

@CFC ΔP̂
� �

@ ΔP̂
� � ¼ 0 :

ΔP̂ ¼ ~H
�1Xn

i¼1

G Xið Þ � g Xi þ ~U Xi;~P
� �� �� �

~J Xi;~P
� �T

;

~H ~P
� � ¼Xn

i¼1

~J Xi;~P
� �T~J Xi;~P

� �
;

(39)

where ~H ~P
� �

is the Hessian matrix depending also on the
prior estimated displacement parameters ~P. Both greyscales
of the restored image g Xþ ~U

� �
and their gradients

gx Xþ ~U
� �

in Equations (38b) and (39) have to be evaluated
at the non-integral pixel locations Xþ ~U by a bilinear or
other higher-order interpolation scheme. It is important to
note that the only difference between the forward additive
and compositional algorithms is the extra term Iþ ~U~X in
the Jacobian vector given in Equation (37c) as compared
with that given in Equation (34b).

Finally, a first-order Taylor expansion of the numerically
distorted image G ~Xþ Δeu ~X;Δep� �� �

in the forward inverse
compositional SSD coefficient of Equation (15) about the
parameter increments Δep leads to

G ~Xþ Δ~u ~X;Δep� �� � � G ~X
� �þ @G ~Xþ Δ~u ~X;Δep� �� �

@ Δepð Þ Δep
¼ G ~X

� �þ J0 ~X
� �

Δep; (40a)

where the Jacobian vector J0 ~X
� �

is computed atΔep � 0using
the chain rule as

J0 ~X
� � � @G ~Xþ Δeu ~X;Δep� �� �

@ Δepð Þ ¼ @G ~X
� �
@X

@X
@ Δepð Þ

¼ @G ~X
� �
@X

@ Δeu ~X;Δep� �� �
@ Δepð Þ ¼ GX ~X

� �
ΔeuΔep ~X;Δep� �

:

(40b)
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For the affine deformation given by Equation (4), one has

ΔeuΔep eX;Δep� �
¼

@ Δeu eX;Δep� �h i
@ Δepð Þ

¼ 1 0 eX
0 1 0

0 eY 0eX 0 eY
 !

;

(41a)

J0 ~X
� � ¼ GX ~X

� �
ΔeuΔep ~X;Δep� �

¼ GX ;GYð Þ 1 0 eX
0 1 0

0 eY 0eX 0 eY
 !

¼ GX ;GY ; eXGX ; eXGY ; eYGX ; eYGY

� �
:

(41b)

Minimization of the approximate forward inverse
compositional SSD coefficient (differentiating the SSD
coefficient with respect to Δep and setting the result to zero)
leads to a closed form solution:

@CFIC Δepð Þ
@ Δepð Þ ¼ 0 :

Δep ¼ �H�1
0

Xn
i¼1

h
G eXi

� �
� g eXi þ eU eXi; eP� �� �i

J0 eXi

� �T
;

H0 ¼
Xn
i¼1

J0 eXi

� �T
J0 eXi

� �
;

(42)

where H0 is the Hessian matrix. The subscript ‘0’ used for
the Jacobian vector and Hessian matrix emphasises the fact
that both of them are independent of the prior estimated
displacement parameters eP. Only greyscales of the restored
image g eXþ eU� �

in Equation (42) have to be evaluated at
the non-integral pixel locations eXþ eU by a bilinear or other
higher-order interpolation scheme. The difference between
the inverse compositional and forward additive algorithms
is that the Jacobian vector as given in Equation (40b) is
computed from the greyscale gradients of the initial image
instead from those of the current image as given in Equation
(34b). Because the SSD coefficients of Lucas–Kanade DIC
algorithms all have the similar mathematical form as
described in the second section and summarised in Tables 1
and 2, a similar closed form solution for the parameter
increments should also be readily obtained for any other
algorithms discussed in this study.

Equivalence of numerical solutions by additive,
compositional and inverse compositional algorithms

Here, analytical proofs on the equivalence of the numerical
solutions by forward additive, compositional and inverse
compositional algorithms are first presented for the case of
one-dimensional affine deformation P= (U0,UX)

T. Written

in the matrix form for this case, the closed form solution
Equation (36) for forward additive algorithm becomes

ΔU0

ΔUX

	 

¼ H�1

Xn
i¼1

G� g½ �gx
Xn
i¼1

G� g½ �Xgx

0BBBB@
1CCCCA �

Xn

i¼1
G� g½ �gxXn

i¼1
gxð Þ2Xn

i¼1
G� g½ �XgxXn

i¼1
Xgxð Þ2

0BBBBB@

1CCCCCA;

(43a)

where H ¼ H Pð Þ ¼

Xn
i¼1

gxð Þ2
Xn
i¼1

X gxð Þ2

Xn
i¼1

X gxð Þ2
Xn
i¼1

Xgxð Þ2

0BBBB@
1CCCCA: (43b)

Similarly, the closed form solution, Equation (39), for
compositional algorithm becomes

ΔÛ 0

ΔÛX

 !
¼ H�1 1þ eUX

� �
Xn
i¼1

G� g½ �gx

Xn
i¼1

G� g½ �Xgx

0BBBB@
1CCCCA

� 1

1þ eUX

� �
Xn

i¼1
G� g½ �gxXn

i¼1
gxð Þ2Xn

i¼1
G� g½ �XgxXn

i¼1
Xgxð Þ2

0BBBBBB@

1CCCCCCA
¼ 1

1þ eUX

� � ΔU0

ΔUX

 !
; ð43cÞ

where from Eq: 38bð Þ and Eq: 39ð Þ : eH ¼ eH eP� �

¼ 1þ eUX

� �2
Xn
i¼1

gxð Þ2
Xn
i¼1

X gxð Þ2

Xn
i¼1

X gxð Þ2
Xn
i¼1

Xgxð Þ2

0BBBB@
1CCCCA; ð43dÞ

Finally, the closed form solution Equation (42) for inverse
compositional algorithm becomes

Δeu0
ΔeuX

 !
¼ �H�1

0

Xn
i¼1

G� g½ �GX

Xn
i¼1

G� g½ �eXGX

0BBBB@
1CCCCA � �

Xn

i¼1
G� g½ �GXXn

i¼1
GXð Þ2Xn

i¼1
G� g½ �eXGXXn

i¼1
eXGX

� �2

0BBBBBB@

1CCCCCCA
� 1

1þ eUX

� � �ΔU0

�ΔUX

 !
; ð43eÞ
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where H0 ¼

Xn
i¼1

GXð Þ2
Xn
i¼1

eX GXð Þ2

Xn
i¼1

X GXð Þ2
Xn
i¼1

eXGX

� �2
0BBBB@

1CCCCA

� 1þ eUX

� �2
Xn
i¼1

gxð Þ2
Xn
i¼1

X gxð Þ2

Xn
i¼1

X gxð Þ2
Xn
i¼1

Xgxð Þ2

0BBBB@
1CCCCA:

(43f)

The diagonal approximation are made to the inverse of
the Hessian matrices above and such an approximation is

very good when the origin of coordinates either X or eX is
set at the geometrical centre of the image subset [29]. In

addition, G eX� � � g eX þ eU� �
with Δep ! 0 is assumed at the

end of the iterative numerical solution process, so one has

GX ¼ @G eX� �
@X

� @g

@x

@x

@X
¼ @g

@x

@x

@eX ¼ gx 1þ eUX

� �
(44)

for the inverse compositional algorithm given in Equations
(43e) and (43f).
The forward composite mapping of Equation (12) for the

one-dimensional case with its parameter increments given
in Equation (43b) becomes

Φ eP� �
Φ ΔP̂
� � ¼ 1þ eUX eU0

0 1

 !
1þ ΔÛX ΔÛ 0

0 1

 !

¼ 1þ eUX eU0

0 1

 !
1þ ΔUX

1þ eUX

ΔU0

1þ eUX

0 1

0@ 1A;

(44a)
or

Φ eP� �
Φ ΔP̂
� � ¼ 1þ eUX þ ΔUX eU0 þ ΔU0

0 1

 !
; (44b)

which is identical to that of Equation (9) in the one-
dimensional case (with eUX ¼ UX ). In other words,
parameters obtained for the one-dimensional affine
deformation by the forward compositional algorithm are
equivalent to those obtained by the forward additive
algorithm. Similarly, the inverse composite mapping of
Equation (17) for the one-dimensional case with its
parameter increments given in Equation (43e) becomes

Φ eP� �
w Δepð Þ ¼ 1þ eUX eU0

0 1

 !
1þ euX Δeu0

0 1

	 


¼ 1þ eUX eU0

0 1

 !
1� ΔUX

1þ eUX

� ΔU0

1þ eUX

0 1

0@ 1A�1

;

(45a)

or (recall w Δepð Þ�1 ¼ w �Δepð Þ for Δep ! 0 [15])

Φ eP� �
w Δepð Þ � 1þ eUX eU0

0 1

 !
1þ ΔUX

1þ eUX

ΔU0

1þ eUX

0 1

0@ 1A
¼ 1þ eUX þ ΔUX eU0 þ ΔU0

0 1

 !
;

(45b)

which is again identical to that of Equation (9) in the one-
dimensional case (with eUX ¼ UX ). In other words,
parameters obtained for the one-dimensional affine
deformation by the forward inverse compositional
algorithm are also equivalent to those obtained by the
forward additive algorithm.

Modified forward additive and compositional algorithms

A modified version of the forward additive algorithm
given in Equation (7) with its closed form numerical
solution given in Equation (36) has been proposed by
Hager and Belhumeur [21]. The modified algorithm has
been called as ‘inverse additive’ by Baker and Matthews
[15]. The basic premise of the approach by Hager and
Belhumeur [21] is that (1) the prior estimated
deformation parameters P are sufficiently close to the
final solution, so the numerically restored image g
(X +U) is very close to the initial image G(X) and (2)
the parameterized deformation function has certain
properties, so the greyscale gradients and the Jacobian
vector may be computed very differently:

g x X;Pð Þð Þ ¼ g Xþ U X;Pð Þð Þ � G Xð Þ;
@g

@X
¼ @g

@x
@x
@X

¼ @g

@x
Iþ @U X;Pð Þ

@X

	 

� @G Xð Þ

@X
; ð46aÞ

so gx Xþ Uð Þ ¼ @g

@x
� @G Xð Þ

@X
Iþ @U X;Pð Þ

@X

	 
�1

¼ GX Xð Þ Iþ UX X;Pð Þ½ ��1; ð46bÞ

J X;Pð Þ ¼ GX Xð Þ Iþ UX X;Pð Þ½ ��1UP X;Pð Þ

¼ GX ;GYð Þ 1þ UX UY

VX 1þ VY

	 
�1 1 0 X

0 1 0

0 Y 0

X 0 Y

 !
:

(46c)

Following the matrix form given in Baker and
Matthews [15], the Jacobian vector above can be re-
written as
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where D= (1 +UX)(1 +VY)�UYVX>0. So both the Jacobian
vector and Hessian matrix can be re-written as

JðX;PÞ ¼ J0 Xð ÞΓ Pð Þ; H Pð Þ ¼
Xn
i¼1

J Xi;Pð ÞTJ X;Pð Þ

¼ Γ Pð ÞT
Xn
i¼1

J0 Xð ÞTJ0 Xð Þ
" #

Γ Pð Þ ¼ Γ Pð ÞTH0Γ Pð Þ; (48)

where H(P) is the Hessian matrix depending on the prior
estimated displacement parameters P. Minimization of
the approximate forward additive SSD coefficient
(differentiating the SSD coefficient with respect to ΔP and
setting the result to zero) leads to a closed form solution:

ΔP ¼ H�1
Xn
i¼1

G Xið Þ � g Xi þ U Xi;Pð Þð Þ½ �J Xi;Pð ÞT

¼ Γ Pð Þ�1H�1
0

Xn
i¼1

G Xið Þ � g Xi þ Uð Þ½ �J0 Xið ÞT ; (49a)

or ΔP ¼ �Γ Pð Þ�1Δep; (49b)

where Δep is given by Equation (42) and Γ(P)�1 is a 6-by-6
matrix as [15]

Γ Pð Þ�1 ¼

1þ UX UY

VX 1þ VY

0 0

0 0

0 0

0 0

0 0

0 0

1þ UX UY

VX 1þ VY

0 0

0 0

0 0

0 0

0 0

0 0

1þ UX UY

VX 1þ VY

0BBBBBBBBBB@

1CCCCCCCCCCA
:

The key assumption about the modified additive
algorithm is that the Jacobian vector can be changed from
the form of Equation (46c) into the form of Equation (47),
and the matrix (P) is invertible [21]. It turns out that affine
deformation mapping considered here satisfies just such
conditions. Furthermore, one can prove through some
algebraic operations that the parameter increments ΔP

given in Equation (49b) is the same as ΔP computed

from Equation (17) (noting P ¼ eP and w Δepð Þ�1 ¼ w �Δepð Þ
for Δep ! 0). That is, the final numerical solutions obtained
by the modified forward additive and inverse compositional
algorithms are equivalent for (2D) affine deformation
mapping.

The forward compositional algorithm given in Equation
(10) with its closed form numerical solution given in
Equation (39) can also be modified in a similar way. Again,
it is assumed that that the prior estimated deformation

parameters eP are sufficiently close to the final solution, so
the numerically restored image eg Xþ ΔUð Þ is very close to

the initial image G(X), namely (with ΔP̂ ! 0)

eg Xþ ΔUð Þ ¼ g x eX X;ΔP̂
� �

;eP� �� �
� G Xð Þ; so

@g

@X
¼ @g

@x
@x

@ eX @ eX
@X

¼ @g

@x
Iþ @eU

@X

 !
� @G Xð Þ

@X
:

(51)

The Jacobian vector given in Equation (38b) will thus be
replaced by the one given in Equation (41b), noting eX in
Equation (41b) is also very close to X in Equation (38b) for

ΔP̂ ! 0 . Consequently, the numerical solution given in
Equation (39) becomes

ΔP̂ ¼ eH�1Xn
i¼1

G Xið Þ � g Xi þ eU Xi
eP� �� �h ieJ Xi

eP� �T
¼ H�1

0

Xn
i¼1

G Xið Þ � g Xi þ eU� �h i
J0 Xið ÞT ¼ �Δep: (52)

One can prove that Φ ΔP̂
� � ¼ w Δepð Þ�1 for ΔP̂ ¼ �Δep

(noting againw Δepð Þ�1 ¼ w �Δepð Þ forΔep ! 0). As the updated
parameters for forward compositional and inverse
compositional algorithms are given by Equations (12)
and (17), respectively, the final numerical solutions of the
deformation parameters obtained by the forward
compositional and inverse compositional algorithms are
equivalent for (2D) affine deformation mapping.

J X;Pð Þ ¼ GX;GYð Þ
1 0 X

0 1 0

0 Y 0

X 0 Y

 !
1þ VY �UY

�VX 1þ UX

0 0

0 0

0 0

0 0

0 0

0 0

1þ VY �UY

�VX 1þ UX

0 0

0 0

0 0

0 0

0 0

0 0

1þ VY �UY

�VX 1þ UX

0BBBBBBBBBB@

1CCCCCCCCCCA
=D: (47)
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Comparison of the computational cost

Closed form solutions for the parameter increments of the
affine displacement field function of an image subset have
been obtained for forward additive, compositional and inverse
compositional DIC algorithms using the Gauss–Newton
gradient decent method, as shown in Equations (36), (39) and
(42). Assuming that the image pair are of sufficient high quality
and the prior estimate of the displacement parameters is within
the radius of convergence of the gradient decent method, the
repeated use of the closed form solution after parameter
updating at each iteration step is expected to produce the
correct displacement parameters within the limit of image
noises and numerical approximation errors [4, 29, 31]. The
major differences in the numerical solutions of DIC algorithms
include the computation of the Jacobian vector (for example,
see Equations (34b), (37c) and (40b)) and the subsequent
formation of the corresponding Hessian matrix, whether only
one image or both images are numerically modified in the
correlation analysis, and how the displacement parameters are
updated from their prior estimates with the new increments.
The major computational cost associated with the numerical
solution will be the re-evaluation of image greyscales and
especially their spatial gradients at the non-integral pixel

positions at each iteration step. As the greyscale gradients are
re-calculated, so the inverse of the Hessianmatrix in the closed
form solution has to be updated as well, which is
computationally very expensive [15]. Tables 3 and 4 list the
required image greyscales, and their spatial gradients appeared
in a closed form solution of each algorithm by the Gauss–
Newton gradient decent method. Their explicit computations
in termsof image greyscales at only integral pixel locationswith
the case of 1D affine deformation and linear interpolation are
given in Table 5 for all forward and backward algorithms.

As shown in Table 3, the computational costs of forward
and backward algorithms of the same kind (additive,
compositional or inverse compositional) are exactly the
same, assuming the same subpixel interpolation scheme
is used. The computational costs of the additive and
compositional algorithms are similar as well as both the
image greyscales and their gradients are re-computed at each
iteration step after the parameter updating. However, both
forward and backward inverse compositional algorithms
will incur much less computational cost as the spatial
gradients of image greyscales are computed at the integral
pixel positions and remain the same for the entire iterative
solution process (that is, they need to be pre-computed only
once for constructing the Jacobian vector and Hessian

Table 3: Gradient calculation and subpixel interpolation in forward and backward DIC algorithms

Algorithm name
Coordinates
(integer pixel)

Greyscale spatial gradient
and parameter updating

Subpixel interpolation
(X+U=Φ(P)X, etc.)

Forward additive X gx Xþ Uð Þ;
P ! Pþ ΔP

g Xþ Uð Þ;
gx Xþ Uð Þ

Backward additive x
GX xþ uð Þ;
p ! pþ Δp

G xþ uð Þ;
GX xþ uð Þ

Forward compositional X egeX Xð Þ ¼ gx Xþ eU� �
Iþ @eU

@eX
 !

;

Φ eP� �
Φ ΔP̂
� �! Φ PþΔPð Þ

g Xþ eU� �
; gx Xþ eU� �

;

eg Xð Þ � g Xþ eU� �

Backward compositional x eGex xð Þ ¼ GX xþ euð Þ Iþ @eu
@ex

	 

;

w epð Þw Δp̂ð Þ ! w pþ Δpð Þ

G xþ euð Þ;GX xþ euð Þ;eG xð Þ � G xþ euð Þ

Forward inverse compositional eX GX eX� �
*;

Φ eP� �
wΔepð Þ�1 ! Φ Pþ ΔPð Þ

g eXþ eU� �

Backward inverse compositional ex gx exð Þ*;
w epð ÞΦ ΔeP� ��1

! w pþ Δpð Þ
G exþ euð Þ

DIC, digital image correlation.
*Evaluated at the same integral pixel positions and thus computed only once.
Unless otherwise noted, the coordinate symbols listed in the second column are integer-valued pixel points. The spatial gradients of
greyscales needed for completing gradient-decent Gauss–Newton numerical solutions are listed in the third column. The updating
methods for increments of deformation parameters are given also in the third column. Images that need to be numerically distorted
or restored with subpixel interpolation of greyscales and their spatial gradients that need to be computed are listed in the
fourth column.
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matrix, [15]). When analysing a sequence of images using the
same initial image as the reference, both the Jacobian vector
and Hessian matrix are unchanged so the computational cost
is further reduced in comparison with the additive and
compositional algorithms. One possible significant saving on
the computational cost for additive and compositional
algorithms is when the prior estimate of the deformation
parameters are close enough to the final convergent solution
so the Hessian matrix in the closed-form solutions no longer
needs updating for a given subpixel interpolation scheme used.
As shown in Table 5, the greyscale gradients computed from a
central difference formula will remain constant when the
maximum absolute increment in displacements is too small

to change the integral pixel coordinates Ω used in the gradient
calculations. Nevertheless, tracking such changes is rather
cumbersome in comparison with the inverse compositional
algorithms where the Hessian matrix always remains constant.

The computational costs are generally higher for consistent
and symmetric algorithms, and the computational cost
savings of a constant Hessianmatrix in inverse compositional
algorithms are no longer available, see Table 4. Again, the
consistent additive and compositional algorithms incur about
the same amount of the computational cost consisting of
subpixel interpolation of greyscales of three images and
spatial gradient vectors of greyscales of two images. The
consistent inverse compositional algorithm is only slightly

Table 4: Greyscale gradient calculation and subpixel interpolation in consistent and symmetric DIC algorithms

Algorithm name
Coordinates
(integer pixel)

Greyscale spatial gradient and
parameter matrix relation Subpixel interpolation (X+U=Φ(P)X, etc.)

Consistent additive Xex ¼ Φ eP� �eX* gx XþUð Þ;GX xþ uð Þ;
w pþ Δpð Þ ¼ Φ Pþ ΔPð Þ�1

g XþUð Þ; gx Xþ Uð Þ;
g xð Þ;G xþ uð Þ;GX xþ uð Þ

Consistent compositional
Xex ¼ Φ eP� �eX*

gx Xþ eU� �
Iþ @eU

@eX
 !

;

GX xþ euð Þ Iþ @eu
@ex

	 

;

w Δp̂ð Þ ¼ Φ P̂
� �

Φ ΔP̂
� ��1

Φ eP� ��1

g Xþ eU� �
; gx Xþ eU� �

;

g xð Þ;G xþ euð Þ;GX xþ euð Þ

Consistent inverse compositional
eXex ¼ Φ eP� �eX* GX eX� �

**; gx exð Þ;

w Δp̂ð Þ ¼ Φ eP� ��1
Φ ΔeP� ��1

Φ eP� � g eXþ eU� �
;G exþ euð Þ;

g exð Þ; gx exð Þ

Consistent mixed compositional
XeX � X

gx Xþ Û
� �

Iþ @eU
@eX

 !
; GX eX� �**

;

w Δp̂ð Þ ¼ Φ ΔP̂
� ��1

g Xþ Û
� �

; gx Xþ Û
� �

Symmetric additive X
gx Xþ U
� �

;GX Xþ u
� �

;

w pþ Δpð Þ ¼ Φ PþΔP
� ��1

g Xþ U
� �

; gx Xþ U
� �

G Xþ u
� �

;GX Xþ u
� �

Symmetric compositional X

gx Xþ eU� �
Iþ @eU

@ eX
 !

;

GX Xþ eu� �
Iþ @eu

@ex
	 


;

w Δp̂ð Þ ¼ Φ eP� �
Φ ΔP̂
� ��1

Φ eP� ��1

g Xþ eU� �
; gx Xþ eU� �

G Xþ eu� �
;GX Xþ eu� �

DIC, digital image correlation.
*Non-integral pixel positions. **Evaluated at the same integral pixel positions and thus computed only once.
Unless otherwise noted, the coordinate symbols listed in the second column are integer-valued pixel points. The spatial gradients of
greyscales needed for completing gradient-decent Gauss–Newton numerical solutions are listed in the third column. The relations
between increments of deformation parameters in two different deformation parameter matrices are given in the third column.
Images that need to be numerically distorted or restored with subpixel interpolation of greyscales and their spatial gradients that
need to be computed are listed in the fourth column.
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more computationally efficient as the spatial gradient vector
of only one image is needed. The so-called consistent mixed
compositional algorithm appears to be more efficient as its
computational cost is about the same as that of a normal
additive or compositional algorithm given in Table 3: it needs
subpixel interpolation of greyscales of only one image
and computation of spatial gradient vectors of the same and
only image. Both symmetric additive and compositional
algorithms are found to be of the same computational cost,
and it is higher than consistent inverse and mixed
compositional algorithms (see Table 4). Again, the only one
possible significant saving on the computational cost for
consistent and symmetric algorithms is when the prior
estimate of the deformation parameters are close enough to
the final convergent solution, so the Hessian matrix in each
closed-form solution no longer needs updating in the
subsequent iteration steps.

Discussion
The deformation measurement based on DIC is essentially
solving an inverse nonlinear optimization problem from a
pair of digital images. Any practical DIC algorithm should
thus be best stated explicitly as an iteratively numerical

solution to the problem by incrementally updating the
deformation parameters as given first by Lucas and Kanade
[12]. For non-rigid deformation such as affine deformation
considered in this work, one of the three possible
methods (additive, compositional or inverse compositional)
of incremental updating of the deformation mapping
parameters should also be explicitly described in the
formulation of a DIC algorithm [15] (see also Tables 1 and
2 in this paper). However, a closer attention has not been
paid in the literature to the important fact that the
parameterized displacement field or deformation mapping
should be concisely defined with respect to a particular
frame of reference or coordinates. For example, the
presentation of the compositional image alignments by
Baker and Matthews [15] is rather confusing as they use
the deformation or warp parameters (vectors) p and Δp in
their detailed discussion of the algorithms (for example,
see their Equations (12)–(30a)). One may simply ask, if Δp
are the increments of p as their notation implies, then
why is the updating of p cannot be simply done as a vector
addition p+Δp here? As shown in Equations (10)–(12) in
this paper, in fact, these two sets of warp parameters are
measured against two different frames of reference, and they
are better represented as different vectors with respect to

Table 5: Forward and backward DIC algorithms for 1D affine deformation with linear interpolation

Algorithm name Integer pixel ( fractional) Greyscale spatial gradient Subpixel interpolation (updating with U; u; eU;eu)
Forward additive X; x;Ω 0≤r < 1ð Þ 2gx X þ Uð Þ ¼ g Ωþ 1ð Þ � g Ω� 1ð Þ;Ω

�0:5 < X þ U≤Ωþ 0:5
g X þUð Þ ¼ g xð Þ þ gjr; gx ¼ g xþ 1ð Þ � g xð Þ; x

¼ X þ U � r

Backward additive
x; x;Ω

0≤r < 1ð Þ
2GX xþ uð Þ ¼ G Ωþ 1ð Þ � G Ω� 1ð Þ;

Ω� 0:5 < xþ u≤Ωþ 0:5

G xþ uð Þ ¼ G xð Þ þ Gxr;

Gx ¼ G xþ 1ð Þ � G xð Þ;
x ¼ xþ u� r

Forward compositional
X; x;Ω

0≤r < 1ð Þ
2gx X þ eU� � ¼ g Ωþ 1ð Þ � g Ω� 1ð Þ;

Ω� 0:5 < X þ eU≤Ωþ 0:5

g X þ eU� � ¼ g xð Þ þ gjr;

gj xð Þ ¼ g xþ 1ð Þ � g xð Þ;
x ¼ X þ eU � r

Backward compositional
x; x;Ω

0≤r < 1ð Þ
2GX xþ euð Þ ¼ G Ωþ 1ð Þ � G Ω� 1ð Þ;

Ω� 0:5 < xþ eu≤Ωþ 0:5

G xþ euð Þ ¼ G xð Þ þ Gxr;

Gx ¼ G xþ 1ð Þ � G xð Þ;
x ¼ xþ eu� r

Forward inverse
compositional

eX; x;Ω
0≤r < 1ð Þ

2GX eX� � ¼ G Ωþ 1ð Þ � G Ω� 1ð Þ*;
Ω � eX

g eX þ eU� � ¼ g xð Þ þ gjr;

gj xð Þ ¼ g xþ 1ð Þ � g xð Þ;
x ¼ eX þ eU � r

Backward inverse
compositional

x~; x;Ω

0≤r < 1ð Þ
2gx exð Þ ¼ g Ωþ 1ð Þ � g Ω� 1ð Þ*;

Ω � eX
G exþ euð Þ ¼ G xð Þ þ Gxr;

Gx ¼ G xþ 1ð Þ � G xð Þ;
x ¼ exþ eu� r

DIC, digital image correlation.
*Evaluated at the same integer pixels and thus computed only once.
For the case of one-dimensional affine deformation between two images, explicit expressions are given for computing the spatial
gradients of image greyscales (third column) using a Prewitt gradient operator and image greyscales (fourth column) at non-integral
pixel point locations using linear interpolation. The integral pixel coordinates used in the spatial gradient calculation formula and in
the linear interpolation of image greyscales themselves may differ by one pixel.
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two different bases (as eP and ΔP̂ in this paper), and the
updating of the parameters P+ΔP for the deformation
between the initial and current images thus has to be done
by multiplication of their parameter matrices (i.e. via
‘composing’). We also make a very careful distinction in this
paper between the increments ΔP in the resulting composed

warp parameters P+ΔP and ΔP̂ , that is, they are not the
same as well (see Equation (11b) in this paper).
The use of confusing notations is not only confined to

the computer vision literature. For example, Zhou and
Goodson [32] used I1(r) and I2(r) to designate the initial
and current images and then stated their relations as I2
(r) = I1[r�U(r)] and I1(r) = I2[r+U(r)], where r=X= (X,Y)
and U(r) is the forward displacement field of the initial
image towards the current image. While there is nothing
wrong with these two relations, one must understand that
the pixel point r in I2(r) is physically different from the
pixel point r in I1(r). Consequently, the simultaneous use
of both I1(r) and I2(r) in their formulation of the DIC
algorithm (see Sections 2.2 and 2.3 of their paper) is strictly
incorrect. Similarly, the illustrations shown in Figures 1 and
2 by Avants et al. [16] for their symmetric and consistent
cross-correlation image registration algorithms are rather
confusing as the same pixel point x is used for both initial
and current images as well. The approach used in this work
to define each displacement field and deformation mapping
concisely with respect to each specific frame of reference
(integral-pixel coordinate system) is thus recommended.
As mentioned in the Introduction, DIC algorithms used

so far in experimental mechanics is predominantly the
forward additive type. One reason is that it is very natural
to use the Lagrangian description of total motion and
deformation based on the reference and deformed
configurations in continuum mechanics [36]. Another
reason is that any initial boundary value problem in
continuum mechanics is often solved in the forward
direction due to the dictate of thermodynamics and
application needs. However, an image correlation analysis
for deformation measurements does not have to be in the
forward direction only as it involves only the kinematics of
a continuum material element. It is thus not surprising that
the image correlation analysis can be much more flexible in
terms of either the total deformation or the incremental
deformation mapping directions. As shown here for
physically admissible affine deformation, one can always
compose and/or invert multiple such affine parameter
matrices to obtain the total forward (Lagrangian)
transformation matrix for an image pair in the end. DIC
algorithms other than the forward additive type may be
more advantageous in some deformation measurement
applications. For example, a backward additive DIC
algorithm is used by Tong [26] and Tao et al. [27] to analyse
the deformation field around a growing crack. The obvious
advantage of such an approach is to avoid the use of a subset

with a discontinuous displacement field as the subset based
on the current image will have the cracked path and the free
boundaries clearly defined. Another benefit of using a
backward additive analysis is the reduced bias and
variability in the displacement measurements when the
initial image at the onset of a test is virtually noise-free
[28]. It is often the case that one can record multiple image
frames of a stationary sample before the onset of the
experiment to obtain the frame-averaged initial image with
little or much reduced random Gaussian white noises [31,
33]. In addition, the inverse compositional algorithm is
shown to be much more computationally efferent [15],
and it will be especially useful for analysing a set of images
such as recorded sequentially during an experiment.
Displacement measurements of better quality may also be
obtained by using the forward version of the inverse
compositional algorithm for the case of a noise-free initial
image and noisy current images. As shown in Tables 3 and

5, the spatial greyscale gradient GXðeXÞ will be noise-free
and thus more accurate, similar to the situation in a
backward algorithm [28]. In other words, although the final
numerical solutions of the DIC algorithms are all
equivalent, they are not identical in terms of bias and
variability levels in the measured displacements using noisy
digital images.

The (inverse) consistent and symmetric DIC algorithms
have been proposed in the computer vision and medical
image analysis literature for dealing with challenging image
registration problems often involved images with low signal-
to-noise ratios and very large heterogeneous deformation.
They have so far seldom been used in experimental
mechanics. One drawback of these algorithms is that the
computational efficiency of inverse compositional algorithms
is no longer available (see the third section and Table 4),
although they are not much more costly than the additive
or compositional algorithms. They may be nevertheless
advantageous for some selected applications. It is well known
that the success of a gradient-decent-based method such as
the Gauss–Newton method in solving the minimization
problem of an SSD coefficient depends on the quality of the
initial guess. That is, the initial guess has to be within the
radius of convergence for the gradient decent method to
converge to the correct solution. The symmetric DICs would
have the radius of convergence twice as large as the ones by
other algorithms. A symmetric DIC may also be a natural
choice for 3D surface deformation measurement applications
using a dual-camera stereo vision system where the middle
view (by a third camera) between a left camera and a right
camera does not exist [1, 34]. Although all DIC algorithms
discussed so far is for two-frame analysis applications, the
consistent and symmetric formulations of the DIC algorithms
can also be extended to a multi-frame DIC analysis. For
example, the intermediate image in a symmetric DIC
algorithm will no longer be a virtual one but can be an actual
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middle image in a three-frame analysis. Both forward and
backward inverse compositional algorithms may be used to
achieve much better computational efficiency than the
forward additive algorithm given by Cofaru et al. [35].
Although there is an implicitly imposed condition on the
affine deformation parameters for physically admissible
continuous deformation, the classic forward additive DIC
algorithms do not enforce such a requirement explicitly at
all. There may exist occasions when the image quality is poor,
image deformation is large and the prior estimate of the
deformation parameters fall outside the radius of
convergence, so the resulting affine parameters may converge
to a wrong solution that violates the condition for physically
admissible affine deformation. The invertible affine
deformation mapping condition is automatically embedded
in all inverse consistent DIC algorithms so the resulting affine
deformation parameters will more likely be physically
admissible with such additional constraints. Additional
research into this topic using actual examples of digital images
will be warranted to verify if these algorithms will indeed
perform better under such circumstances.
The focus in this study has been on the mathematical

formulation of DIC algorithms with a particular emphasis
on the total and incremental deformation mapping
directions and their concise definitions with respect to the
frame of reference (integral-pixel coordinate systems). An
example of using the gradient-decent Gauss–Newton
numerical solution method has also been discussed in some
details. There are many other additional aspects of a DIC
algorithm that will affect its computational efficiency and
measurement quality. All SSD coefficients for the DIC
algorithms discussed in this study (see Tables 1 and 2) have
been defined in terms of as-recorded greyscales of initial and
current images. One can use the normalised greyscales of
these images to make the algorithms more robust against
the photometric gain and bias that may exist in original
greyscale images [1, 3, 5]. The use of the so-called zero-mean
normalised sum-of-squared differences will incur some
additional computational costs but will make the DIC
analysis more robust. As shown in Tables 3 and 4, the actual
implementation of a DIC algorithm needs also to specify
how the image greyscales at non-integral pixel locations
and their spatial gradients at both integral and non-integral
pixel locations should be computed. This is related to the
selection of a subpixel interpolation scheme (such as the
example of linear interpolation given in Table 5). It is
interesting to note that the computation of the spatial
gradients of the image greyscales may not need to be strictly
following the interpolation scheme used for the image
greyscales. For example, it is rather common in the digital
image processing literature to use a digital gradient filter or
operator to approximate the spatial gradients of the image
greyscales [19]. As shown in Table 5, the example of a
central difference gradient (the so-called Prewitt operator

instead of Robert operator in 1D) is used for the spatial
gradient of the image greyscales at both integral and non-
integral pixel locations. The effect of a particular
interpolation scheme and spatial gradient operator used in
the analysis on the accuracy and precision of displacement
measurements will have to be evaluated case-by-case in
combination with the specific algorithm and numerical
solution method selected.

Another important aspect of a DIC algorithm is the choice
of the deformation mapping types. In this study, only the
physically admissible affine deformation mapping has been
used because it has been widely used in many existing DIC
algorithms, and its parameter matrix is invertible. The
invertible parameter matrix (or the deformation mapping
parameters form a group) is an important requirement in
inverse compositional, consistent and symmetric DIC
algorithms [15, 16]. A homography from projective space is
another commonly used invertible transformation [15, 22].
As it is stated in the Introduction, applications in solid
mechanics often have more stringent requirements on the
accuracy and precision of displacement field measurements.
The use of a larger image subset is often favoured in a DIC
analysis because a larger n (the total number of pixels used)
effectively reduces the variability of the displacement and
displacement-gradient measurements due to image
noises [29, 31]. The affine deformation mapping will not
be a good approximation at all for such a large image subset
undergoing non-affine deformation and the mismatch
between the actual deformation and assumed affine
deformation will induce significant systematic biases in
the deformation measurements. Higher-order non-affine
(and non-groupwise, in general) deformation mapping has
to be used in these circumstances to obtain the
displacement measurements over a large image subset at
reduced bias and variability levels. Finally, all DIC
algorithms discussed here are of a local type that uses a
deformation mapping over a small image subset centred at
a selected image pixel point, and the analysis repeats over
many individual points with associated subsets to obtain
the displacement field over the entire domain of interest
in images. The formulation of various DIC algorithms
presented in this study can, in principle, be readily applied
to a global DIC analysis algorithm where a fixed finite-
element mesh is prescribed over an entire domain of
interest in images and nodal displacements as deformation
parameters of all nodes of the finite-element mesh are
solved together. In fact, the case of the so-called piecewise
affine deformation mappings considered by Baker and
Matthews [25] is basically a global analysis using linear
triangular finite elements. It is interesting to know that the
piecewise affine deformation mappings do not form a group,
although Baker and Matthews [25] was able to extend
nevertheless the inverse compositional algorithm to such
non-group mappings to the first-order approximation in
deformation parameters. Further research is needed to assess
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if inverse compositional and other advanced algorithms
discussed here can also be extended to more general types
of non-groupwise deformation mappings in a local analysis
and to other types of finite elements such as four-node
bilinear elements and higher-order elements in a global
analysis while maintaining the high measurement quality
on the deformation parameters.

Summary
A forward additive DIC analysis, which is most commonly
used in experimental mechanics, is to estimate the
increments of forward deformation parameters of an image
subset by minimising their SSD of greyscales between an
image numerically restored from the current image and the
initial image. A backward additive DIC analysis is to
estimate the increments of backward deformation para-
meters of the image subset by minimising their SSD of
greyscales between an image numerically distorted from the
initial image and current image.
A compositional DIC analysis is to estimate the increments

of deformation parameters of the image subset by minimising
their SSD of greyscales between a pair of images that are
numerically restored (from the current image) and numerically
distorted (from the initial image), respectively, towards an
intermediate image frame. The intermediate image itself is
between the initial and current images and is moved
incrementally in the iterative solution process towards either
the initial or the current image. Among the two types of
compositional algorithms, the inverse compositional version
is shown to be computationally most efficient of all algorithms
considered here while maintaining the same or even superior
accuracy and precision in displacement measurements.
A consistent DIC analysis is a joint forward and backward

analysis in which both forward deformation and backward
deformation are made to be consistent (that is, their
transformation or parameter matrices are the inverse of
each other). A symmetric DIC analysis is to estimate the
increments of deformation parameters of the image subset
by minimising their SSD of greyscales between a pair of
images that are respectively numerically restored (from the
current image) and numerically distorted (from the initial
image) towards a fixed image frame. The fixed image is
chosen to be the symmetric image that is exactly half-way
in terms of relative deformation between the initial and
current images. While both consistent and symmetric
algorithms are in general computationally more costly, they
may be more robust and less biased for some materials
testing and structural monitoring applications.
The equivalency among the algorithms has been proved but

only within the limit of first-order numerical approximations
and within the measurement errors due to image noises.
Among the remaining questions in comparing various
algorithms collected in this paper are (a) whether or not they

achieve the same level of accuracy for a given image pair and
(b) what is the applicability of each algorithm for a particular
deformation measurement situation. The general answer to
the first question appears to be no: for example, the backward
additive algorithmhas no noise-induced bias in displacements
in comparison with the forward additive algorithm if one uses
a noise-free initial image [28]. The answer would be specific to
each individual algorithm and its implementation. For
example, as far as the author knows, there is no study on
comparing the displacement measurement accuracy between
the forward additive and inverse compositional algorithms.
The second question appears to a little more challenging: it is
well known in the computer vision community that although
the inverse compositional algorithm is fastest (that is, it is ideal
for real-time applications) but is less flexible in terms of subset
deformation models (being limited to groupwise deformation
such as affine and homographic warps only [15]). Several
attempts to extend the algorithm to higher-order non-
groupwise deformation fields (such as a quadric or cubic
polynomial deformation field) have so far not been successful.
The use of central difference for spatial gradients of greyscales
and linear interpolation for subpixel greyscale computations
are only given as an example about how each algorithm may
be implemented for a one-dimensional case. Just like the use
of the Gauss–Newton numerical method, they are used as
means to provide an introductory step to anyone who is
interested in implementing and evaluating any of the
algorithms collected in this paper. The effect of particular
choices of spatial gradient routine and subpixel interpolation
scheme on the measurement errors using a particular
numerical method in a particular type of DIC algorithms
requires an in-depth theoretical analysis, numerical
verification and experimental validation. Hopefully, thiswork
can serve as a useful guide for interested researchers to take
a closer look at these non-classic DIC algorithms and help
to develop new robust and efficient implementations
for accurate deformation measurements in experimental
mechanics applications.

REFERENCES
1. Sutton, M. A., Orteu, J. J. and Schreier, H. W. (2009)

Image Correlation for Shape, Motion and Deformation
Measurements. Springer: New York.

2. Bornert, M., Brémand, F., Doumalin, P., et al. (2009) Assessment
of digital image correlation measurement errors: methodology
and results. Exp. Mech. 49, 353–370.

3. Pan, B., Qian, K. M., Xie, H. M. and Asundi, A. (2009) Two-
dimensional digital image correlation for in-plane
displacement and strain measurement: a review. Meas. Sc.
Technol. 20, 062001.

4. Vendroux, G. and Knauss, W. G. (1998) Submicron
deformation field measurements: part 2. Improved digital
image correlation. Exp. Mech. 38, 86–92.

5. Tong, W. (2005) An evaluation of digital image correlation
criteria for strain mapping applications. Strain 41, 167–175.

© 2013 Wiley Publishing Ltd | Strain (2013) 49, 313–334
333doi: 10.1111/str.12039

W. Tong : Lucas–Kanade Digital Image Correlation Algorithms



6. Peters, W. H. and Ranson, W. F. (1982) Digital imaging
techniques in experimental stress analysis.Opt. Eng. 21, 427–431.

7. Peters, W. H., Ranson, W. F., Sutton, M. A., Chu, T. C. and
Anderson, J. (1983) Application of digital correlation methods
to rigid body mechanics. Opt. Eng. 22, 738–742.

8. James, M. R., Morris, W. L. and Cox, B. N. (1990) A high
accuracy automated strain-field mapper. Exp. Mech. 30, 60–67.

9. Franke, E. A., Wenzel, D. J. and Davison, D. L. (1991)
Measurement of microdisplacements by machine vision
photogrammetry. Rev. Sci. Instrum. 62, 1270–1279.

10. Sutton, M. A., Cheng, M. Q., Peters, W. H., Chao, Y. J. and
McNeill, S. R. (1986) Application of an optimized digital image
correlation method to planar deformation analysis. Image Vis.
Comput. 4, 143–150.

11. Bruck, H. A., McNeill, S. R., Sutton,M. A. and Peters,W. H. (1989)
Digital image correlation using Newton–Raphson method of
partial differential correction. Exp. Mech. 29, 261–267.

12. Lucas, B. D. and Kanade, T. (1981) An iterative image
registration technique with an application to stereo vision.
Proceedings of the 7th International Joint Conference on Artificial
Intelligence (IJCAI ’81), 674–679.

13. Davis, C. Q. and Freeman, D. M. (1998) Statistics of subpixel
registration algorithms based on spatiotemporal gradients or
block matching. Opt. Eng. 37, 1290–1298.

14. Christensen, G. E. and Johnson, H. J. (2001) Consistent image
registration. IEEE Tran. Medical Imaging 20, 568–582.

15. Baker, S. and Matthews, I. (2004) Lucas-Kanade 20years on: a
unifying framework. Int. J. Computer Vision 56, 221–255.

16. Avants, B. B., Epstein, C. L., Grossman, M. and Gee, J. C. (2008)
Symmetric diffeomorphic image registration with cross-
correlation: evaluating automated labeling of elderly and
neurodegenerative brain. Med. Image Anal. 12, 26–41.

17. Horn, B. K. P. and Schunk, B. G. (1981) Determining optical
flow. Artif. Intell. 17, 185–204.

18. Barron, J. L., Fleet, D. J. andBeauchemin, S. S. (1994) Performance
of optical flow techniques. Int. J. Computer Vision 12, 43–77.

19. Jain, R., Kasturi, R. and Schunck, B. G. (1995) Machine Vision.
McGraw-Hill, New York.

20. Zhang, Z. (1997) Motion and structure from two perspective
views: from essential parameters to Euclidean motion via
fundamental matrix. J Opt. Soc, of America A 14, 2938–2950.

21. Hager, G. D. and Belhumeur, P. N. (1998) Efficient region
tracking with parametric models of geometry and illumination.
IEEE Trans. Patt. Ana. Mach. Intell. 20, 1025–1039.

22. Shum, H.-Y. and Szeliski, R. (2000) Construction of panoramic
image mosaics with global and local alignment. Int. J.Computer
Vision 16, 63–84.

23. Westerweel, J. (1997) Fundamentals of digital particle image
velocimetry. Meas. Sci. Technol. 8, 1379–1392.

24. Stanislas, M., Okamoto, K. and Kahler, C. (2003) Main
results of the first international PIV challenge. Meas. Sci.
Technol. 14, R63–R89.

25. Baker, S. and Matthews, I. (2001) Equivalence and efficiency of
image alignment algorithms. Proceedings of the IEEE Conf.
Computer Vision and Pattern Recognition, vol. 1, 1090–1097.

26. Tong, W. (2004) An adaptive backward image correlation
technique for deformation mapping of a growing crack in thin
sheets. Exp. Tech. 28, 63–67.

27. Tao, H., Zavattieri, P. D., Hector, Jr. L. G. and Tong, W.
(2010) Mode I fracture at spot welds in dual-phase steel: an
application of reverse digital image correlation. Exp. Mech.
50, 1199–1212.

28. Tong, W. (2011) Subpixel image registration with reduced bias.
Opt. Lett. 36, 763–765.

29. Tong, W., Yao, H. and Xuan, Y. (2011) An improved error
evaluation in one-dimensional deformation measurements by
linear digital image correlation. Exp. Mech. 51, 1019–1031.

30. Birchfield, S. (1997) Derivation of Kanade-Lucas-Tomasi tracking
equation. http://www.ces.clemson.edu/~stb/klt/birchfield-klt-
derivation.pdf.

31. Wang, Y. Q., Sutton, M. A., Bruck, H. A. and Schreier, H. W.
(2009) Quantitative error assessment in pattern matching:
effects of intensity pattern noise, interpolation, strain
and image contrast on motion measurements. Strain 45,
160–178.

32. Zhou, P. and Goodson, K. E. (2001) Subpixel displacement and
deformation gradient measurement using digital image speckle
correlation (DISC). Opt. Eng. 40, 1613–1620.

33. Smith, B. W., Li, X. and Tong, W. (1998) Error assessment for
strainmapping by digital image correlation. Exp. Tech. 22, 19–21.

34. Tong, W. (2004) Plastic strain mapping of bent sheets by image
correlation. Exp. Mech. 44, 502–511.

35. Cofaru, C., Philips, W. and Van Paepegem, W. (2012) A three-
frame digital image correlation (DIC) method for the
measurement of small displacements and strains. Meas. Sci.
Technol. 23, 105406.

36. Asaro, R. J. and Lubarda, V. A. (2006) Mechanics of Solids and
Materials. Cambridge University Press, New York.

© 2013 Wiley Publishing Ltd | Strain (2013) 49, 313–334
334 doi: 10.1111/str.12039

Lucas–Kanade Digital Image Correlation Algorithms : W. Tong

http://www.ces.clemson.edu/~stb/klt/birchfield-klt-derivation.pdf
http://www.ces.clemson.edu/~stb/klt/birchfield-klt-derivation.pdf


Copyright of Strain is the property of Wiley-Blackwell and its content may not be copied or
emailed to multiple sites or posted to a listserv without the copyright holder's express written
permission. However, users may print, download, or email articles for individual use.


