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Abstract

The question of registering two images (or volumes) acquired with differ-
ent modalities, and thus exhibiting different contrast, is addressed based on
an extension of global Digital Image (or Volume) Correlation. A specific
comparison metric is to be introduced allowing the signature of the different
phases to be related. A first solution consists of Gaussian mixture to describe
the joint distribution of gray levels, which not only provides a matching of
both images, but also offers a natural segmentation indicator. A second
‘self-adapting’ solution does not postulate any a priori model for the joint
histogram, and registers both images based on their initial histogram. The
algorithm is implemented with a pyramidal multiscale framework for robust-
ness. The proposed multiscale technique is tested on two 3D images obtained
from X-ray and neutron tomography respectively.

Keywords: Digital image correlation; Image fusion; Image registration;
Neutron tomography; X-ray tomography

1. Introduction

Various modalities provide different information on materials because of
their different sensitivities, and thus their different contrast. Yet to benefit
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from multiple modalities it is essential to be able to obtain a local character-
ization of them for the same material point. However, images are generally
not acquired (or reconstructed) in the same frame. Hence rigid body mo-
tions have to be considered to make the two frames coincident. Additionally,
image resolutions may be different, so that the transformation has to be en-
riched with a possible dilation/contraction. The purpose of the present study
is to identify the transformation F' (i.e., rigid body motions and isotropic
dilation, that is 4 or 7 parameters respectively in 2D or 3D) calling for the
registration of the two images.

As an illustration, Figure 1 shows two horizontal slices of the same cylin-
drical specimen imaged by X-ray and neutron tomography. The contrast is
different in both images, although some specific (and matching) patterns can
be seen. This 3D example will be used to validate the proposed registration
procedure.

(a) X-ray

Figure 1: An example pair of images obtained from slices manually selected from recon-
structed a) x-ray and b) neutron tomography volumes

There exist simple ways to find such a transformation: a set of remarkable
points can be chosen in both images and from their respective coordinates,
the transformation F' can be determined [1]. In three dimensions, a minimum
of three points is needed, whereas two points are sufficient in two dimensions.
Redundancy provided by using more points allows robustness to be improved
and more importantly the validation to be thoroughly probed. This technique
is expected to allow for a matching with an accuracy of typically a few pixels.



Moreover, the selection of remarkable points may be tedious especially in
three dimensions.

Multimodal (multi-sensor) registration poses a particular difficulty due
to the fact that the contrast of both images is different, and hence it is
difficult to assess their coincidence from a proper metric. Thus sometimes
artificial examples are considered where the exact solution is known and hence
quadratic differences (or equivalent signal to noise ratio) between the test case
and its known reference is used to evaluate a given strategy before it is applied
to real data [2]. Yet the question of the representativeness of the artificial
reference case and its noise mostly remain unknown. As previously discussed,
multimodal registration can be achieved by selecting some features that are
deemed robust, such as sharp gradients, and specifically their orientation as
the gradient magnitude cannot generally be compared. Strategies consisting
in matching such features and attributing “points” for each match so as to
maximize the registering score have been proposed 3|, although they call for
a necessarily subjective appreciation, as for the above mentioned remarkable
points.

Traditionally, methods based on mutual information (MI) [4] represent
the leading technique in multimodal registration [5]. Put simply, the MI of
two images is the amount of information that one image contains about the
other and vice versa [6]. Such a metric provides a very general (probabilistic)
framework that does not call for prior expectation or assumptions (such as
linear relationships) but only for a predictable relationship. However, one of
its biggest pitfalls is the arbitrariness of the measure attached to “gray levels”,
and the lack of “distances” in the space of joint gray levels. Similarly, the
knowledge of gray levels in the spatial vicinity of a point is not used. Another
drawback is that most implementations require the images to be registered
to be defined as random variables (i.e., determine their probability density
functions); for which either discrete or continuous approaches need to be used
(such as estimation through Parzen windows [7]).

The first approach for this type of MI-based methods was proposed by
Viola and Wells [7]. Since then, different approaches have been explored in
order to obtain non-rigid multimodal registration: by using multiple local
windows connected through a Gaussian window function ensuring continuity
and smoothness of the deformation field [8]; by using a “correlation ratio” [9]
that is based on the MI but drastically improves on it by considering the
spatial information; by combining MI with a term based on the image gradi-
ent to be registered [6] (i.e., multimodal images can have drastically different
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intensities but since images fundamentally depict the same microstructures,
gradients in two multimodal images are assumed to be similar); or by mod-
eling the deformed image as a viscous fluid that deforms under the influence
of forces derived from the gradient of the MI [10] (built upon [11]).

However, image registration, and particularly Digital Image Correlation
(DIC), has shown a much higher resolution potential [12]. Resolutions of
one hundredth of pixel can be achieved due to the exploitation of all pixels
(or voxels) in a given region of interest. Such resolution is precious for solid
mechanics applications [13], and hence it would be appealing to benefit from
a similar matching accuracy when dealing with images issued from different
sensors. However, the difficulty is that a suitable metric has to be considered
to estimate the “distance” between the two images when in coincidence.

Let us note that, although not very frequent, within the methodology of
DIC, some prior work has explored the question of image registration with
different modalities, but with a rather straightforward correspondence be-
tween the different contrasts. For instance, the calibration of distortions in
an SEM has been studied aimed at registering a design of a speckle marking
(a binary image) with an actual acquisition of the surface where the mark-
ing has been applied by a Pt e-lithography technique [14]. In this case an
affine transformation of the gray levels revealed sufficient. In Refs. [15, 16],
the authors used the joint histogram of two simultaneous X-ray and neutron
acquisitions assuming that the images were identically located without dis-
placement and distortion. A more difficult example deals with an extension
of classical stereo-vision or stereocorrelation [17, 12] to hybrid stereocorrela-
tion. In that case, two images, one acquired with a standard optical camera,
and a second one with an IR camera, taken from two different points of view
were matched so as to extract a 3D shape and displacement of the surface of
a specimen [18].

The outline of the article is the following. After having introduced the
problem and notations in Section 2, it is proposed to address the registration
as a minimization based on a “potential” . The algorithm, including a mul-
tiscale version, follows closely what is done in global DVC, and is presented
in Section 3. Different formulations can be proposed for the potential as
discussed in Section 4. However, within a probabilistic framework, the mini-
mization of the potential can be seen as the maximization of a log-likelihood
providing clues to formulate different descriptions. Two particular cases are
proposed. The first is based on a Gaussian Mixture model to account for the
joint histogram. It is shown to be very well suited to the problem at hand
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and has the additional benefit of leading to a segmentation into phases. The
second is model-free and hence does not rely on any specific prior modeling
of the microstructure into phases. In contrast, it aims to learn the potential
from the current joint histogram of gray levels. To illustrate the merits and
limits of the proposed algorithm, Section 5 provides a 3D test case in which
the two approaches are applied. The results show that both approaches are
successful at registering the images, and provide comparable estimates of
transformations. A brief summary of the proposed procedure and achieved
results is given in Section 6 together with some perspectives.

2. Formulation

The two images are f(x) and g(x), where f and g denote the gray level
values provided by each modality. The registration consists in finding the
transformation F' such that the material point at position x in the first
image coincides with the same material point at position ' = F.x in the
second one. In order to account for translation, rotation and dilation, it
is convenient to use homogeneous coordinates * = (1, x2,x3, 1), where the
last unit coordinate allows the change in origin to be considered within the
same linear framework. The sought transformation is linear and hence it
can be represented by the 4x4 matrix F' with a trivial conventional row
F(4,.) = (0,0,0,1). The non trivial part is a 3 x 4 matrix that may also
describe an arbitrary homogeneous deformation. The above assumptions
imply that the deviatoric part of the strain (5 components) is null, so that the
remaining degrees of freedom are 12—5 = 7 consistent with the 3 translations,
3 rotations and 1 dilation. F' can be restricted to the above 7 unknowns or
left free with 12 unknowns, in which case the estimated deviatoric strain
may be a way to validate the approach or to detect possible distortions in
one modality or the other.

In the following, the second possibility of 12 unknowns is chosen. More
specifically, F' is written as

F_ I+e+w t (1)
0 o0 0 1

where I is the 3 x 3 identity matrix, € and w respectively the symmetric and
anti-symmetric parts of the F'(1 — 3,1 — 3) upper block, t is a translation



vector. The origin of the coordinate system is located in one corner of the
images (minimum x; coordinates are 0). The anti-symmetric tensor w can
be interpreted as a rotation, while € is the infinitesimal strain tensor.

If both images were acquired with the same modality, it would have been
expected that for all  in the Region of Interest

f(@) = g(F - x) (2)

i.e., the brightness conservation assumption, which is at the basis of digital
image correlation [13]. The above relationship can be relaxed, for instance
to account for different brightness or contrast, and is rewritten as

(f(=), g(F - x)) =0 (3)

where ®(f,g) = a1 f — asg — a3 is an affine transformation. In particular,
image correlation based on normalized cross-correlation for instance is natu-
rally immunized against such an affine transform ® [12]. Image correlation is
generally formalized to tolerate a gaussian white noise that affects both im-
ages. This leads to relaxing the above formulation so that the transformation
F is sought as the minimizer of the functional 7 over all affine transforms

F = ArgmingTI[G|
TGl = ) 9(f(2).9(G =) (4)

xeROI

When considering different modalities, the change in gray levels is generally
much more drastic than just an affine transformation. Yet, the assumption
that is physically sound is that the material consists of few phasesi =1,..., N
that have a well defined signature (f;, g;) in the (f, g) plane. In other words,
wherever the phase is located in space, it will give the same gray level with
the same modality. Note however that even if the above statement seems
quite natural, for instance the artifact called “beam hardening” in X-ray
tomography [19] violates this assumption. Figure 2 shows a log-scale joint
histogram of the two images shown in Figure 1 prior to any registration. It is
natural to interpret the most salient peaks as corresponding to the different
phases (fi,9;), at the reservation that prior to registration, a wrong voxel
positioning may give rise to spurious peaks in the joint histogram, as the f
and ¢ coordinates may refer to a different phase.

The spirit of the proposed approach is thus to design a “potential” ®
that is locally minimum for the different phases (f;, g;), and to determine F'
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from the minimization of 7. Different approaches can be followed in order
to choose this potential. The discussion on its determination is deferred for
a further section, and the minimization algorithm is first discussed.
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Figure 2: logjp-scale joint histogram of gray levels from the sections shown in Fig. 1 with
no registration

3. Registration algorithm

The registration problem is nonlinear and it is proposed to solve it with
a Gauss-Newton algorithm, assuming that the initial determination of F' is
close to the solution. Thus the algorithm consists in the determination of
successive corrections to the current estimate of the transformation F™ at
iteration n.

3.1. Gauss-Newton algorithm

Let us introduce the following notations for the corrected image
" (z) = g(F™ - x) (5)

At iteration n, the correction is denoted as G+ = I + dF™*Y_ such that
FO) — @HUF®) - The functional to be minimized takes the following
expression

TIFE" = Y @3 (f(x), " (G - w)) (6)

xEROI
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Expanding the above integral up to second order in oF
TIFOH] = Z o (f, G 4 (Vg™ - SFD L))
x€ROI (7>
-y [[®7] + ([Cbz],z)(Vg(?’)- 5F(’(L“i)- z)
- ~(n n+
2+ (1/2)([ 0 2) (V) - FD 2]
where the notations [®?] , and [®?] 2, are used to refer to the partial deriva-
tives with respect to the second argument once or twice respectively and 2
as well as its derivatives are computed at point (f, §™) (omitted for concise-

ness).

(n+1)
]
(n+1)

Because the unknowns are themselves the component of a matrix, 6F

it is convenient to relabel them with a single index m such that JoF

oF E?ﬂt)lj)(m), thus defining implicitly ¢(m) and j(m), in the spirit of Voigt no-

tation for the strain tensor [20]. Since the above expression of the functional

is quadratic in 8F™*Y  its determination is the solution to a linear system
MISEY = A, (8)
where
M3 =37 (9% 20) (@i ) (@i T0) (9)
x€ROI
and
A == 37 (@2 @sm T (10)
x€ROI

In those equations x; refers to the i-th component of the vector x.
The correction to the transformation is then taken into account as

FO+D) — (I + 6F(n+1))F(n) (11)

It may be worth noting that standard DIC and DVC (i.e., with the same
modality) is recovered for ®*(f, g) = (1/2)(f — ¢)?, where Hessian and Jaco-
bian respectively take the well-known [21] following expressions

My =Y (@5m)5m) (@3 ) (12)
xcROI
and
Am= > (F=7™) (@53 (13)
xcEROI



Within the classical DIC and DVC frameworks, a very precious tool is the
residual field, p(x), namely the image difference between reference and cor-
rected deformed images. This field, which is resolved at the voxel scale,
shows success of the registration, and possibly where it did not, so that the
registration may be revisited with other assumptions or corrections. When
extended to the above general intermodality framework, it is observed that
the equivalent residual field is

computed at convergence.

3.2. Multiscale approach

One of the major difficulties encountered in DIC and DVC is the initial-
ization of the transformation F'. If it is too far from the actual solution,
the above algorithm may simply diverge, or converge to a secondary mini-
mum of 7. The criterion to track convergence is based on the ratio of the
maximum displacement over all voxels of the region of interest and the cor-
relation length of the image as estimated from the pair correlation function.
When the ratio exceeds unity, there is a risk of convergence toward spurious
secondary minima.

One easy (and cheap) way of enhancing the robustness of DIC and DVC is
to coarse-grain the images [22, 23|. This coarse-graining consists of a low-pass
filtering with a filter at a characteristic scale of 2 pixels, and a decimation
that retains only one pixel out of two in each spatial direction. The result
is smaller image whose size has been cut down by a factor of 2¢ where d
is the space dimension. The resulting pixels can be seen as “super-pixels”
that account for the underlying group of 2¢ fine scale pixels. The simplest
coarse graining step consists in replacing each elementary group of 2% pixels,
by a single super-pixel with the arithmetic average of the gray levels of the
group. This coarse-graining operation can be applied recursively, thereby
defining a pyramidal construction, where each pyramid level represents the
coarsened image of the level below. When expressed in “super-pixels,” the
maximum displacement decreases by a factor of 2 at each level of the pyramid.
Conversely, the correlation length cannot decrease below one pixel, and thus
it is easy in a few pyramidal levels to restore a safe convergence criterion.
Once convergence has been achieved at a given level n of the pyramid, it



may be used to initialize a new DVC computation at the level (n — 1), down
to level 0 which conventionally is the original image. In the implementation
discussed below, a Gaussian pyramid implementation [24| has been chosen.
Figure 3 shows a set of four coarse-grained images from level 3 to 0 (original
image) for the example of the section of the X-ray tomography (Figure 1(a)).
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Figure 3: Pyramid of X-ray tomographic images (section along median z plane)

In the particular context of multimodal DVC, the only new question to
address is how to design the potential ® at different levels of the pyramid.
Pure phases that are present as large grains tend to display a sharper peak
in the joint histogram as the pyramid level increases, as noise is very much
reduced in the coarsening operations. Phases that are present as very small



grains are progressively assimilated with their surrounding and contribute to
broadening their distribution. Hence, there is no general rule that would be
independent of the microstructure, and it is suggested to observe the joint
histogram and adjust the ® potential at each level of the pyramid. The
multiscale procedure is summarized in Algorithm 1.

Algorithm 1 Multiscale intermodal DVC algorithm
Initialize F’
for PyramidLevel=n:-1:0 do
Compute pyramidal f(x)
Compute pyramidal g(x)
Compute g (x)
Compute joint histogram (f, §®)
Adjust ¢
while ||6F|| > ¢ do
Compute M,,,
Compute A,,
Solve M,,,0F, = A,,
Update F
Compute g™ ()
end while
end for
Display residual “distance” (®(f,3™)?) 2
Compute joint histogram
Extract segmentation

4. Design of potential ®

4.1. What is expected from the potential?

In such a simple case of having only a few pure phases, it is natural
to tailor a specific ®(f, g) functional relying on very few parameters. One
practical way of designing this potential is to consider the joint histogram of
gray levels, and select the points that correspond to the centroids of clustered
data that suggest the occurrence of a given phase. Figure 2 shows such
a joint histogram using a log scale for the density of probability. It is to
be noted that when images are not registered yet, this joint histogram will
display spurious populations of voxels whose gray values (f, g) correspond to
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different phases. Those points share the abscissa and ordinate of existing (but
different) phases. It will be shown in the following that the region around
f =55 and g = 95 as seen in Fig. 2 is such a spurious point.

In reality, pixel (or voxel) data are not punctual, but they rather cor-
respond to an integration over a finite area or volume. Thus, voxels are
not expected to consist only of pure phases. For those lying across the
boundary between two phases ¢ and j, it is expected that the voxel value
be f =af;+ (1 —«)f; and g = ag; + (1 — a)g;, where a ranges continuously
over the interval [0, 1]. Hence a distribution of gray levels all along the seg-
ment connecting two pure phases is expected. The probability density along
this line is related to the density of i-j grain boundaries crossed by voxels.
The probability is low for a coarse microstructure, and increases for a finer
one. Likewise, a term that lowers the penalty given to a mixture between
phases may be introduced in the potential ®.

Let us emphasize that the image resolution itself may have a very signif-
icant impact on the joint histogram and hence on the potential to be used.
Although trivial, this observation justifies that the potential should in prin-
ciple be adjusted at each level of a multiscale procedure.

4.2. Likelihood interpretation

The previous discussion points to the design of specific & functionals,
based on the observation of joint density distribution for h = (f, g) gray
levels. The latter potential should ideally be adjusted once registration has
been achieved, and this is the very motivation for computing ®?. At best,
an iterative treatment of the problem may be envisioned where better and
better approximations of the potential are looked for.

In fact the previous approach can be rewritten in terms of a probabilistic
inference approach. From a registered pair of images, one may compute the
probability distribution function of h, p(h). Then, the likelihood that the
two images f(x) and g(F - x) coincide can be written

LIF o [ p(f(2),9(F - ) (15)

x€ROI

The log-likelihood assumes a convenient form

log(L[F]) = Z log(p(f(x),g(F.x))) + constant (16)
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Maximizing the probability or equivalently log-likelihood thus should lead us
to the registration solution. Hence it is deduced from the comparison with
the postulated form of the DVC functional 7 that a natural expression of
the potential ® is (disregarding a useless additional constant)

©*(h) = —log(p(h)) (17)

Rather than ®? being a subjectively designed potential, the above log-likelihood
interpretation provides a well-defined and objective foundation. The diffi-
culty however, is that the joint distribution and hence the cost function can
only be known once registration has been achieved, and the latter calls for
the cost function.

Hence a first strategy can be designed whereby it is assumed that the
starting point of the registration is already good enough to provide a decent
estimate of ®2. From it, a registration transformation F is estimated, and
hence a corrected joint histogram is computed that allows ®? to be updated,
and iteratively, a fixed point solution is sought, which would correspond to
registration. In order not to be trapped in local minima, and to compute
gradients and curvatures safely, the joint histogram p is first filtered by con-
volution with a Gaussian kernel whose standard deviation is 3 gray levels
(on an 8-bit scale), in order to compute ®? as in Eq. (17). This approach is
denoted as LL (for log-likelihood) in the following.

Let us underline that, in contrast with several approaches cited in the
introduction, the above procedure for determining ® is no longer just a rea-
sonable choice, or a particular heuristics, such as the quadratic differences,
peak SNR or mutual information. It exploits a functional that provides a
maximum likelihood estimator without any a prior: assumption. The only
caveat is that no guarantee for convergence can be shown. It is however clear
that close to the solution a converged solution that coincides with the desired
one can easily be obtained. The principal limitation is therefore the maxi-
mum tolerable distance from the solution that still leads to the solution. In
this respect, the multiscale procedure is a way to make the algorithm more
robust to large initial mismatches.

4.8. Gaussian mizture approach

A classical way of describing a two-parameter distribution is the Gaussian
mixture model [15, 16]. It consists in representing the distribution of gray
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levels pairs h = (f, g) as
p(h) = Z oiN (h; pi, 07) (18)

where N (h; i, o) is the normal distribution of A with mean g and covariance
o. Introducing

Ai(h) = (1/2)(h — pi)o; ' (b — i) (19)
p reads
p(h) = 3 exp(=Ai(h) +log(01) (20)

if the Gaussians are well separated, then

plh) =~ max exp(—Ai(h) + log(6,))]

21
A exp [— min(\; (k) — log(¢;)) (21)
Using the previous relationship between p and ®?, the following simple ex-
pression of the potential results

@ (h) = min((k) ~ log(6,)) (22

This second strategy (labeled GM in the following) appears comparable
to the previous one in the sense that ®? still represents the negative log-
likelihood. However, as compared to the previous LL approach, which is
a plain depiction of the joint histogram, a specific model for the joint dis-
tribution is proposed that naturally focusses on the most populated peaks.
Therefore spurious secondary peaks may be ignored if the number of Gaus-
sian components is small enough, and if an approximate registration is avail-
able initially. Thus, this GM approach is expected to help convergence from
more distant initial registration than LL. However, because the approxima-
tion involved is forcing a simplifying model in GM, it is anticipated that the
uncertainty of the finally obtained registration will be larger than that of the
LL approach.

Let us also mention a side benefit of the GM approach: as the potential
appears as consisting of a few paraboloids, the h plane is naturally parti-
tioned into sub-domains each belonging to a single paraboloid, the bound-
aries between subdomains being simple conic curves. The label ¢ where the
minimum is reached in Eq. (22) can be assigned to each gray level pair h,
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(k) = i. Each subdomain 7 is characterized by a “phase” whose signature
is the gray level pair p; of the apex of the paraboloid. Moreover, a linear
function and a constant function can be introduced respectively for [®?],
and [®?] 29, in each subdomain of this partition. After registration, assigning
the label ¥(h) to each voxel where the gray level pair is h allows the image
to be directly segmented based on the signatures of each phase.

Such a segmentation is not directly available following the LL approach,
although one could still consider the basin of attraction of each minimum of
the ®? potential using a steepest descent.

5. Test case

In order to illustrate the performance of both proposed approaches, LL
and GM, a 3D case is chosen where two modalities X-ray and neutron tomo-
graphies have been performed with a similar resolution.

5.1. FExperimental details

The studied material is a Bentheim sandstone with an average porosity
of about 23 %, a mean grain diameter of 300 um and a composition of
95 % quartz, 3% kaolinite and 2 % orthoclase [SR Erika: wt.%, vol%
or at%??? — I can’t find this information in the paper, I asked a
colleague, waiting for the answer | [28|. The sample shape is cylindrical
with 50 mm diameter and 100 mm height. It was scanned independently
using X-ray and neutron tomography.

Both measurements were carried out at the Helmholtz-Zentrum Berlin
(HZB). Neutron images were acquired at the beamline CONRAD [25] with
L/D of 500, a voxel size of about 30 pm and an acquisition time for each
radiography of 30 seconds, which gives a total time of about 6 hours for a
complete scan of 600 images. X-ray tomographies were acquired through a
lab source with a voltage of 120 kV, a current of 83 pA, a voxel size of about
30 um and an acquisition time for each radiography of 1.3 s, which gives a
total time of about 2.5 hours for a complete scan of 1300 projections (each
projection resulted from the mean of 5 repeated images). To compare ...

In the following, an un-optimized Matlab implementation has been used
to illustrate the feasibility of the approach. In order to limit memory usage,
two volumes of height Az = 128 voxels where first extracted in both 3D-
images. They were also 2 x 2-binned in the transverse (z, y) directions so that
the cross-sections were 900 x 900 voxels for both modalities. Last, they were
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re-encoded into 8 bits. A four-level pyramidal scheme was used where level
1 corresponds to the 900 x 900 x 128 volume. However, in order to preserve
a decent thickness at all floors of the pyramid, it was chosen not to coarse-
grain the z direction. Hence at level 4, the volume shape was approximately
cubic 112 x 112 x 128, but its microstructure was highly anisotropic as each
level-4 voxel resulted from an original 8 x 8 x 1 group of voxels in the original
image. The price to pay for this anisometric re-scaling is that one should be
careful when transferring the result of one level as the initialization of the
next one, and resorting to physical coordinates rather than voxel numberings
is a simple way to avoid ambiguities.

5.2. Results of the GM approach

The first test was performed using the Gaussian mixture (GM) route
developed in Section 4.3. Although automatic selection algorithms are avail-
able to fit Gaussian mixture distributions, our attempts to use them lead to
rather poor fits (more often than not the means were pushed to the limits
of accessible gray levels (0 or 255). Thus a simple procedure was designed
for fitting the highest peaks, fitting the highest of the residual between the
measured joint histogram and the already identified Gaussian components
recursively. Albeit simple, this procedure reveals itself to be robust and ad-
equate for our usage. The number of components was a priori prescribed
from the shape of the joint histogram. As the latter is highly dependent on
the pyramid level, it was selected independently per level. Here, it went from
two components for level 4 to four components at level 1. At the coarsest
level, choosing two Gaussian components forbids the spurious third peak (see
Fig. 4(a)) to be mistaken for a real one, thereby favoring its annihilation with
the transformation F'.

Figures 4(b-e) show the change of the joint histogram of both images
after registration at different levels of the pyramid. It is observed that the
spurious patterns that appear as horizontal or vertical lines in Fig. 4(a) al-
ready disappeared after convergence at level 4. The joint histogram appears
already at this stage to display very few signs of mismatch. At lower levels,
only a broadening of the histograms is visible, which simply results from the
higher resolution and the higher noise magnitude.

Table 1 gives the number of iterations at each level of the pyramid, to-
gether with the estimated parameters of the transformation F'. The conver-
gence criterion is chosen to be the stationarity of the deformation gradient,
and relaxation is stopped when the change between two iterations is less than
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Figure 4: (a) log;y-scale joint histogram at various stages of the GM registration from (a)
the initial step at level 4, and after registration at levels 4 to 1 respectively in (b) to (e)
of registered image

17



Table 1: Evaluation of the transformation parameters at convergence for each pyramid
level, using the GM approach. The convergence criterion was chosen to be such that the
norm of the deformation gradient part of 8F should be less than 5 x 1074

Pyramid level | L=4 | L=3|L=2|L=1
(iterations) 47) | (12) | (12) | (10)

€ne %) | 178 | 172 | 1.69 | 166
€y (%) | 1.75 | 1.68 | 1.63 | 1.60
€. (%) | -2.04 | 2.90 | -2.72 | -2.88
€y- (%) | -0.36 | -0.24 | -0.21 | -0.21
€z (%) | -0.21 | -0.01 | 0.03 | 0.03
€ay (%) | -0.05 | 0.01 | 0.04 | 0.04
we  (deg)) | -0.11 | -0.07 | -0.06 | -0.07
Wy (deg.) | 0.43 0.52 0.58 0.59
w.  (deg)| 059 | 068 | 070 | 0.71
T,  (vox.)| -14.1 | -15.7 | -16.1 | -16.0
T,  (vox) | -11.8 | -10.1 | -9.4 | 9.1

T, (vox.) | 9.8 9.1 9.3 9.6

5 x 107 or when the number of iterations reaches a maximum number here
chosen to be 60 (with a minimum of 10). It is observed that the number of
iterations is large at level L = 4 (where the volume is much smaller than
at later stages and hence computation is much faster). After this first step,
the number of iterations is close to the imposed minimum. Consistently, it is
observed that the transformation is already very well determined after con-
vergence at level L = 4. Further corrections from one level to the next are
of order 1072 in strain. Only the e, strain shows a larger correction from
L =4 to L = 3, where it almost reaches its final stabilized value. It is also
interesting to observe that directions x and y behave in a similar fashion,
with very close values. However, they both differ quite significantly from
direction z. Since the latter is the rotation axis, it is deduced that it is not
coupled with the perpendicular directions that, in contrast, are processed
together in the reconstruction, and hence cannot be different. Thus, one
possible explanation of this difference is that one detector array is not square
but rather rectangular.

As above discussed, a residual field, @?2, is constructed at convergence.
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It is shown in Figure 5(a). The fact that neither f or g, can be recognised
in the residual field is an indication that the result can be trusted.

One output of the proposed registration is a natural segmentation. Start-
ing from any gray level pair (f,g), following the steepest descent in the
potential, directly provides a partition into (here) four basins of attraction,
and hence any (f,g) can be labelled by the indices of the different basin
roots. This labelling of each voxel by a specific “phase” is a natural seg-
mentation issued from the proposed approach. Figure 5(b) shows the result
of such a labelling issued from the GM approach. It is noteworthy that no
other treatment has been performed (such as spatial filtering or any other
morphological operator) to dampen the noise.

02 04 06 038
) Y

(a) (b)

Figure 5: (a) Residual at convergence (level 1) and (b) segmented map (with four phases)
after registration using the GM approach (section along median z plane)

5.3. Results of the arbitrary likelthood LL approach

The advantage of the LL approach lies in the fact that there is less room
for personal judgement, as the potential is based on the observed histogram.
However, as could be seen in the previous section in Fig. 4, depending on
the pyramid level, the joint histogram itself appears to change significantly
across pyramidal levels. In particular at the initial state, registration is rather
poor and the resulting spurious features in the joint histogram will not be
corrected in the present approach as they were in the GM approach (simply
because very few (i.e., 2) components were chosen initially). Here the only
processing of the joint histogram is a convolution by a Gaussian whose width
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is three gray levels in order to remove high frequency fluctuations and hence
local minima.
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Figure 6: Observed joint histograms after convergence at four pyramidals level from L = 4
toL=1

Figure 6 shows the initial potential at different pyramid levels together
with the converged joint histogram (using the same log-scale). As antici-
pated, because some spurious features are present in the initial histogram,
the early convergence is quite poor and at the end of the L = 4 relaxation,
very few changes occur. In spite of this, at level L = 3, the vertical branch
at the lower f values disappears almost entirely. The following levels are
similar to the GM case, as well as the final joint histogram.

Table 2 gives the results of the DVC registration based on the LL ap-
proach. It is observed first that the number of iterations, in the higher levels,
is much larger than for the GM approach as the maximum iteration number
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is reached. It is also observed consistently with the previous observations
that the estimation of the transformation F' at level 4 is totally wrong. After
convergence at level L = 3, much more decent values are obtained, and show
for the most part a good stability until the end of the registration at L = 1.
In particular L = 2 and L = 1 results show only minute changes. Moreover,
some of these estimates of the transformation F' are in very good agreement
with the previous approach. All strain components differ from the GM esti-
mates by less than 1074, but the ¢,, whose difference with the GM estimate is
close to 1%. Rotations are also almost identical. Translation differences are
also in the voxel range (and 2 voxels along z). One possible reason for larger
differences in the z-direction may come from the fact that the sample size
is also much shorter along the z axis (128) than in the transverse directions
(900).

Table 2: Evaluation of the transformation parameters at convergence for each pyramid
level, using the LL approach. The convergence criterion was chosen to be such that the
norm of the deformation gradient part of 8F should be less than 5 x 10™%

Pyramid level | L=4 | L=3|L=2|L=1
(iterations) (60) | (60) | (41) | (10)
€na (%) | 024 | 158 | 1.63 | 1.60
€ (%) | 010 | 1.39 | 1.53 | 1.52
€. (%) | -2.91 | -3.87 | -1.82 | -1.96
€y2 (%) | -0.64 | -1.38 | -0.24 | -0.21
€ (%) | -0.26 | 0.66 | 0.01 | 0.03
€ay (%) | 0.10 | 0.16 | 0.03 | 0.04
Wy (deg.) | -0.22 | -0.61 | -0.03 | -0.02
wy | (deg) | 0.15 | 085 | 0.70 | 0.72
w. | (deg)| 013 | 0.66 | 0.73 | 0.73
T, | (vox.)| -4.2 | -16.7 | -16.1 | -15.9
T, | (vox)| 07 | 64 | -7.9 | -7.9
T. | (vox)| 95 | 121 | 11.6 | 116

Figure 7(a) shows the residual map at the final step. This again shows
a good convergence where no bias is visible. As previously discussed, for
the GM approach, the different Gaussian components could be associated
with a phase. At convergence, for each voxel, the pair of gray levels of both
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modalities could be ascribed to a specific phase. For the LL case, a similar
albeit less obvious procedure, is designed by identifying pure phases (i.e.,
labels) at maxima of the joint distribution. Then using a steepest ascent
algorithm, any gray level pair will low toward a maximum that defines the
corresponding phase. This procedure groups gray levels into domains from
the basin of attraction of the maxima. The smoothing of the distribution
using a Gaussian filter as earlier discussed for the LL approach limits the
number of maxima. Figure 7(b) shows the distribution of phases, where the
number of phases has been set to 6 without prior subjective statement.

02 04 06 08 02 04 06 038
Y Y

(a) Level 1 (b) Level 1

Figure 7: (a) Residual field after registration using the LL approach. (b) Segmented map
(section along median z plane)

In order to check whether the observed difference is due to a slow relax-
ation preventing to reach the actual solution, it was tried to initialize one
approach with the result of the other one. Each approach led to the same
results as those already reported (i.e., with no influence of the initializa-
tion), so that slow convergence cannot be incriminated. Thus, the observed
difference in the transformation between both approaches presumably comes
from the joint distribution function, which is not adequately depicted in the
GM approach. In contrast, the LL approach that does not postulate priors
to describe the distribution gives a more reliable picture, and hence it ap-
pears as more satisfactory, although it is difficult to provide a more objective
appreciation of this from the registration results.

Last, it is worth emphasizing that tailored potentials may be designed on
demand in order to achieve a registration based on a specific prior judgement
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on the trustful region of the joint histogram. However, a systematic proce-
dure that would allow for a simplified and yet faithful picture of the joint
distribution is the most desirable. Two cases were shown as examples, the
first one, GM, was presumably oversimplifying while the second, LL, was not
constraining enough.

In order to check the quality of registration, Fig. 8 shows two comple-
mentary mosaic pictures, where after registration composite images by as-
sembling checkerboards composed of squares taken from one modality or the
other. This allows continuities to seen with ease whenever relevant, and also
to observe that some patterns are hardly visible in one modality and very
noticeable in the other one.

Figure 8: Complementary composite images formed by a checkerboard assembly of squares
coming form the two modalities after registration. The absence of discontinuity can be
checked along all boundaries

6. Conclusions

It has been shown that the registration of two images acquired with dif-
ferent modalities can be performed through an extension of DVC through
the minimization of a potential ®2. Furthermore, it is shown that if this po-
tential coincides with (the cologarithm of) the joint probability distribution,
then the registration solution is the one that maximizes the likelihood. From
this observation two variants for the potential were formulated:
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- a Gaussian mixture model (GM) where the joint distribution is fitted to a
set of a few Gaussian distributions

- a less intrusive choice (LL) where the measured joint distribution is directly
used to design the potential used in the registration.

A real case study on two-modality tomographic images allows the two
above mentioned algorithms to be probed. The GM algorithm is very stable
with a fast convergence in the multiscale framework. Although less stable,
and displaying a slower convergence, the LL algorithm is also able to provide
a good registration for which the mean transformation parameters were in
good agreement with those obtained from the GM algorithm.

A voxel accuracy can be reached, revealing, in the case under study, arti-
facts related presumably to anisometric detectors: the strain along the tomo-
graphic rotation axis direction and perpendicular to it shows a few percent
difference. Additionally, registration may lead to a segmentation of phases
according to their contrast in both modalities.

The registration of these two-modality images opens the way to enrich /correct
a low resolution, low contrast, or noisy image from one modality with the
other one. For the exploitation of the simultaneous dual X-ray and neu-
tron tomography (instead of separate acquisitions [26]), project “NEXT-
Grenoble”, such an approach should be precious in enhancing the dialog
between both acquisitions.
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