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Abstract

The aim of this paper is to clarify the meaning of the mechanical state variables stress and strain in the case of
random granular assemblies. Stress and strain are expressed in terms of local, micro-level variables with the help of two
complementary geometrical systems. The two expressions show a strong duality which is also analysed in the paper.
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1. Introduction

The aim of this paper is to re-define the continuum-
mechanical state variables stress and strain for a
granular assembly, i.e. a material consisting of sep-
arate particles and having a characteristic discrete
microstructure that changes under external loading.

We shall focus our attention on the quasi-static be-
havior of the material; so time effects will not be con-
sidered at all, and any part of the assembly is assumed
to be in equilibrium. The results will be valid for 2D
and 3D as well. The assembly consists of randomly
packed separate grains having arbitrary convex shape.
Contacting grains have discrete contact points trans-
mitting concentrated contact forces. External forces
act on the assembly through the contact points with its
neighbourhood. For simplicity, body forces and body
moments will not be considered here (however, their
effect could also be included in the concepts to be dis-
cussed).

The final goal of the mechanics of granular ma-
terials is to provide relationships between the exter-
nal loads acting on the material and the resulting dis-
placements. Traditionally, the effect of external loads

is expressed by the continuum-mechanical state vari-
able stress (the relation between loads and the stress
field is given by the equilibrium equations of contin-
uum mechanics, for example the Cauchy equations in
the simplest case); deformations are reflected by the
other continuum-mechanical state variable strain (ge-
ometrical equations set the link between displacements
and the strain field). Stress and strain are related to
each other through the constitutive equations (which
are expected to contain all the necessary information
about the mechanical characteristics of the material).
The geometrical and equilibrium equations are clear
in continuum mechanics; but to find the proper consti-
tutive equations for granular assemblies is not simple
at all: for many years, a large number of theoretical
and experimental studies have been concerned with
the problem, and the results seem to be rather limited.

Recently there are two approaches that most of the
researchers follow in order to solve this problem. Let
us call the first one the continuum-mechanical, and the
second one the microstructural approach.

The idea of the continuum-mechanical approach is
to consider the assembly as a continuous domain, ac-
cept the concept of an infinitesimally small represen-
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tative volume element, and apply stress and strain as
the fundamental variables that uniquely determine the
state of the material in any point. Constitutive rela-
tions are searched for in such a way that they would
not violate the fundamental laws of physics; and the
parameters in the equations, expressing the specific
properties of the material, are measured experimen-
tally. This empirical method is the one used today for
practical engineering problems.

The problem with this is the limited validity of the
results. Experimentally determined relations easily be-
come unreliable if the circumstances for which we
want to apply them differ even slightly from those that
existed during the experiments. (To improve the con-
stitutive equations, either the mathematical form of
the equations must be made more complicated by in-
creasing the number of parameters; or additional state
variables are introduced beside the traditional stress
and strain.)

The microstructural approach is a relatively new
method, and - in the long run - it may be an advan-
tageous alternative to the previous one.

The aim of the microstructural approach is to find
macro-level state variables that are based on micro-
variables such as contact forces, grain displacements,
and local geometrical characteristics. Since it would
reflect those characteristics of the material that are
most significant in determining the macro-behavior,
and the relationships between its state variables would
be strongly connected to the phenomena taking place
in the microstructure, a microstructural theory is ex-
pected to be far more reliable and general than the
existing continuum-mechanical models.

Microstructural studies are rather diverse today and
the scientists working in this field do not agree even on
the most fundamental questions. Different approaches
to the two most important problems will shortly be
summarized below.

1.1. The geometrical modelling of granular
assemblies

The geometrical representation has, in many re-
spects, always been a central problem in the mi-
crostructural approach. A summary will be given
below; first on the different basic geometrical units
suggested for the theoretical description; then on
the best-known mathematical representations applied

for modelling whole systems of grains. Finally, a
short introduction will be given on two concepts that
strongly inspired our efforts to work out the idea of
introducing two complementary cell systems for the
micromechanical analysis of granular assemblies.

So we will start with the various basic units used
for the description in a geometrical representation.

Several early experiments concentrated on the
analysis of micro-level geometrical characteristics
and their changes under loads (see, e.g., Oda, 1972;
Drescher and de Josselin de Jong, 1972, and others).
The simplest unit of the description was the contact
between two grains. It might be said that the orien-
tation of contact normals was considered as the most
important geometrical characteristic of the internal
structure (the different fabric tensors, see Section 1.2,
were defined to describe the orientational distribu-
tion). Branch vectors (vectors connecting the centres
of neighbouring grains) also appeared in several the-
ories (they had an important role in stress definitions
for example, as seen in Section 1.2).

An other possible unit of the analysis is the individ-
ual grain itself. Misra (1993), for instance, suggests
a theory in which a stress tensor and a strain tensor is
assigned to each grain (more exactly, to a polygonal
domain surrounding the grain), and an approximation
of the global behavior is gained through homogeniza-
tion; this approach arises in other papers too. However,
our opinion is that the geometrical characteristics of
a grain, even together with its contact points, cannot
properly reflect the geometrical buildup of the internal
structure, so this unit seems to be insufficient in itself.

A more complex unit was suggested by Chang
(1983), called micro-element. A micro-element con-
sists of a grain and its nearest neighbours (so this unit
can be considered as the composition of the previous
two). This unit is “powerful” in the sense that it is
able to reflect geometrical and topological relations
between grains, so it seems to be a very promising
basis for building up constitutive theories.

Now turn the attention to the well-known geomet-
ric systems that are often used for modelling whole
assemblies.

The widely-used Voronoi tessalation can be applied
in several ways. In the simplest case it is defined for a
set of discrete points given in the 2D or 3D Euclidean
space. In the 2D problem the plane is subdivided into
polygonal domains, each of them containing exactly
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one point. The edges of the domains are the bisect-
ing lines of those straight segments that connect the
neighbouring points. (In 3D the system is similar: the
faces of polyhedral domains are given by the bisecting
planes between neighbouring points.)

Its generalized version can be applied for mono-
size assemblies of circular or spherical grains. For 2D
assemblies of equal circles the plane can be divided
into polygons whose edges are the bisecting lines of
straight segments joining the centres of neighbouring
grains. (The same can be done for 3D too.) A cell
system (““Voronoi cells”) results in such a way that
there is exactly one grain in each cell. This system is
especially suitable for the analysis of regular assem-
blies (see, e.g., Chang et al., 1989).

Dirichlet tessalation, the next system we shall in-
troduce here, has the main advantage over the Voronoi
tessalation in that the grains do not necessarily have
the same size. Consider a set of non-intersecting circu-
lar grains in 2D, or non-intersecting spherical grains in
3D. A domain can be assigned to each grain, consist-
ing of those points which have a shorter or equal tan-
gent to that grain than to any other grain. The common
faces of the domains are the power lines (power planes
in 3D) of neighbouring grains. (It may be worth-
while to mention that in case of monosize assemblies
the Dirichlet and Voronoi tessalations are equivalent.)
A similar tessalation was suggested by Gellatly and
Finney (1982), and applied by Annic et al. (1993)
instead of the Voronoi cells, for the characterization of
assemblies having circular grains with different sizes.

The Dirichlet tessalation, in principle, could be gen-
eralized for particles with arbitrary smooth convex
shape, but as far as we know the problem was solved
and construction algorithms were found only for grains
and assemblies having very special regular geometry.

The Delaunay network can also be a useful tool in
characterizing granular systems. Consider an assembly
of circular or spherical grains; if the Dirichlet cells of
two grains have a common side, connect the two grain
centres by a straight line. These connecting lines form
the Delaunay network of the assembly.

The definition can be modified to give a more phys-
ical meaning to the network if the centres of grains
being in contact are connected. In this version the
branches in the network correspond to the internal sup-
ports in the microstructure. However, the duality with
the Dirichlet tessalation does not necessarily hold in

this case.

(An interesting idea was given in Ostoja-Starzewski
and Wang (1989) by the joint application of Voronoi
tessalation and Delaunay network in the case when
the circles degenerate into points, and the two systems
show a direct duality. A structural mechanical method
provided estimations on the global behavior in such a
way that the branches in the Delaunay network were
considered as linearly elastic two-force springs; these
may correspond to contacts in a granular assembly, for
example.)

In Section 2 of the present paper two new geomet-
rical systems will be introduced as alternatives to the
previous ones. They will be defined for assemblies
of grains having arbitrary convex shape; and there
will be a clear duality between them. Our opinion is
that these advantages make the suggested cell systems
more powerful for the modelling of granular assem-
blies than the presently applied Voronoi, Dirichlet and
Delaunay systems.

Finally, two concepts will be introduced that are of a
very different nature, but both based on the application
of two systems dual to each other.

The first one was suggested by Tonti in 1976. He
was searching for the reason of the common experi-
ence that physical theories having very different mean-
ing show close analogies in the mathematical buildup
of their basic equations. It was shown in his splen-
did paper (Tonti, 1976) that the differential operators
used in the mathematical equations correspond to a
so-called coboundary process executed on two com-
plementary cell systems and this fact leads to conclu-
sions that give the explanation for the existence of the
analogies. The two systems can be introduced as fol-
lows.

To define the primal cell system, consider the anal-
ysed region {2 of the n-dimensional Euclidean space
(for simplicity, this summary will be restricted to
n = 3 only, though the considerations are valid for
smaller or larger n too). Subdivide {2 into small three-
dimensional cells whose faces are formed by the co-
ordinate surfaces of a co-ordinate system x!, x2, x3;
these will be called 3-cells. Every 3-cell is composed
of faces, edges and vertices that will be considered
as 2-cells, 1-cells and O-cells. To construct the dual
cell system, consider the centres of the 3-cells; they
become the vertices (O-cells) in the dual cell system
that is built upon the dual vertices in the same way as



168 K. Bagi/Mechanics of Materials 22 (1996) 165-177

seen above. Obviously, for every p-cell of the primal
system there corresponds a (n — p)-cell of the dual
system, and vice versa.

The other concept was introduced by Satake (1976,
1993, 1994). In his ingenious graph-theoretical ap-
proach two complementary graphs ( particle- and void-
graph) are applied for the topological characterization
of 2D random assemblies. The nodes in the particle
graph correspond to loops in the void graph (repre-
senting the grains); branches of the two graphs cor-
respond to each other (they represent the contacts);
loops in the particle-graph correspond to nodes in the
void-graph (voids). The topological structure of the
graphs is expressed by two topological matrices. The
equilibrium and compatibility equations are compiled
with the help of these matrices; and it was found by
Satake that the topological matrices here have the same
role as the Schaefer operators in generalized contin-
uum mechanics (Schaefer, 1967). (The correspon-
dence between the topological matrices and Schaefer
operators can be understood with the help of Tonti’s
results. Tonti’s concept includes that the differential
operators of continuum mechanics show an analogy
with the coboundary processes. Indeed, the topolog-
ical matrices of Satake could be considered as oper-
ators prescribing some kind of “boundary processes”
in random granular assemblies.)

1.2. Macro-level state variables

The mechanical state of the assembly and its state-
changing can exactly be described and predicted if the
following characteristics are fully given:

- position and geometry of each grain;

- displacements (translations and rotations) of each
grain;

— contact forces;

- material properties of the individual grains.

The behavior of the assembly under external loading
could exactly be predicted on the level of individual
grains in this case. But such a detailed description is
not necessary, and too complicated from a practical
point of view. Instead, the aim of the microstructural
approach is to find macro-level state-variables through
the proper averaging of micro-variables.

There are several different ideas in the literature on
how many, and what kind of variables should be ap-
plied. It is mostly agreed upon that for practical pur-

poses a stress—strain relationship should be given as
the result of any theory; so - as a beginning - a stress
tensor and a strain tensor have to be defined in terms of
micro-variables. (A summary of existing suggestions
will be given a few lines below.) Besides, variables ex-
pressing the geometrical state of the material are also
thought to be necessary. Different fabric tensors were
defined for this purpose to express the directions and
strength of anisotropy of the microstructure (see, e.g.,
Satake (1983) about simple and weighted second-
order fabric tensors; Konishi and Naruse (1988) on
void tensors; Mehrabadi et al. (1988) on fourth-order
fabric tensors) . Other state variables can also be found
in the literature (Cundall et al., 1983, Cambou, 1993,
Koenders, 1993, and others), and not even the number
of necessary variables is clarified. So the problem of
finding suitable state variables is an area under active
research today.

1.2.1. Stress

Several microstructural stress definitions have been
given until today. The first one suggested by Drescher
and de Josselin de Jong (1972) is still rather close
to the continuum-mechanical approach. Consider a
spherical assembly of volume V consisting of grains
having arbitrary shape; the assembly is submitted to
external forces T}, T?,...,T™ on its boundary points
x},x2,...,x". The average stress of an equivalent
continuum of the same V volume under the same loads
is

1 m

= E : kk

0',',"—"-‘7 x,-Tj,
k=1

so this expression can be applied as a definition of the
stress tensor in granular assemblies.

A real microstructural definition was already given
by Christoffersen et al. (1981) where the average
stress of an assembly of grains with arbitrary shape is
expressed with the help of the individual contact forces
inside the assembly. The analysed finite-sized domain
is subjected to a special load p;(x;) having the form

_ Jload
pi=0; nj,

where o-}?“d is a second-rank tensor and n; is the out-
wards unit normal vector on the boundary of the anal-
ysed representative domain. Due to this load, contact

forces F}, F?,...,FM arise between the grains. The
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principle of virtual work leads to a constraint for these
forces:

]oad Z lr: Fc

where o} must be a symmetric tensor to ensure the

moment equ1librium, and the vector [ connects the
centroids of the two grains forming the c-th contact.
The above constraint can be applied as a definition of
the o;j = o-';"’d stress tensor.

A similar definition was suggested by Rothenburg
and Selvadurai (1981), from different theoretical con-
siderations. Consider first an assembly of contacting
grains of arbitrary shape; and imagine that a contin-
uous closed shell surrounds the assembly defining its
boundary this way. The shell is subjected to a spe-
cial load p;(x;) that satisfies the following condition
in every point of the shell:
pi= o_loadn ,
where 019 is a second-rank tensor and »; is the out-
wards unit normal vector on the shell. The contact
forces F!,F?,...,FM act at the contact points be-
tween the grains. The analysis of the equilibriumequa-
tions of the grains show that o-’?“d can be related to
the contact forces inside the assembly in the following
way:

M
]oad = Z lc Fc
c=1

The vector [ is the branch vector belonging to contact
c.

The equation is a constraint on the contact forces
existing due to the specific boundary load. But this
equation suggests the definition of stress in a granular
assembly:

1 M
oy =5 2 HE
c=1

which is similar to the previous one. (Naturally, since
the virtual work principle expresses the equilibrium
condition of the system, no wonder that the two defi-
nitions are equivalent to each other.)

<

1.2.2. Strain

One would expect that due to the duality of stress
and strain, and to the duality of contact forces and rel-
ative displacements, the microstructural definition of
the strain tensor is easy to find. Unfortunately this is
not the case. Though there are some interesting sug-
gestions (a very good summary of which was given
by Satake (1989)), they are rather questionable both
from a theoretical and from a practical point of view
(Bagi, 1991). Section 3 of the present paper tries to
give a definition of the strain tensor in terms of rela-
tive displacements of neighbouring grains. Our hope
is that this definition is already theoretically correct
and physically well-based.

2. Geometrical representation

As a preliminary to the definition of state variables,
this section introduces the suggested geometrical rep-
resentation of discrete materials. First the concept of
material cell system and space cell system will be
explained, then the notations of geometrical micro-
variables used in the later sections will be defined.

2.1. The material cell system

Consider an assembly consisting of grains with
convex but otherwise arbitrary shape in the 2D or 3D
Euclidean space where the distance between two
points is understood in the usual sense; and the PG
distance between a point P and a grain G is the
following:

1. If P is outside G or on its boundary, PG is the
distance between P and that point of G which has the
smallest distance from P. (This includes that for a Q
boundary point of G the distance is zero: QG = 0.)

2. By definition, if P is inside G then PG is negative
and its absolute value is the smallest distance between
P and the boundary points of G.

Consider now a grain Gp and collect all those P
points whose distance from is less or equal than from
any other grain:

PGy < PG, (k # 0).

These P points form a domain around the Gy grain.
The domain has the following important characteris-
tics:
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Fig. 1.

- The internal and boundary points of Gg all belong
to it.

- If PGy < PGy for all k # 0, then P is an internal
point of the domain; if there exists a G; for which
PG, =PG; < PGy for all k #+ 0 and k # i, then P
is a boundary point of the domains of Gy and G;.
Constructing these domains for all the grains the

space is subdivided as illustrated in Fig. 1 for 2D.

Notice the following properties:

~ There is exactly one grain in each domain.

- The domains are contiguous.

- Grains on the boundary of the assembly have infinite
domains while the domains are finite in the inside
of the assembly.

- The common face of neighbouring domains (be-
longing to the grains G; and Gj) is the set of P
points for which PG, = PG, < PG for all k # 1
and k& + 2.

- If two grains have a contact point, the corresponding
domains must have a common face that contains the
contact point itself.

These domains will be referred to as material cells,
and the total system given by them as the material
cell system. The following terminology will be used
in their characterisation:

(a) in 3D: The common points of neighbouring
cells form faces; faces join each other on edges (note
that if the face PG; = PG, < PG; and the face PG, =
PG; < PG have a common edge, then the face PG =
PG; < PGy also joins this edge) ; edges intersect with
each other on nodes.

(b) in 2D: The common points of neighbouring

cells will also be referred to as faces (however, they
are one-dimensional lines in this case); they intersect
with each other on nodes.

Any set of grains having finite material cells will be
called a finite sub-assembly (the cells are not required
to form a contiguous domain). The boundary of the
finite sub-assembly consists of finite faces, forming
one or more closed surfaces (curves in 2D).

2.2. The space cell system

The construction of the space cell system is strongly
based on the above definitions and characteristics.
Starting from an assembly and its material cell sys-
tem, the space cell system is defined by the following
algorithm in 3D:

1. Nodes of the system are the grain centres (they
correspond to the material cells).

2. If two material cells have a common face, the cor-
responding grain centres are connected with a straight
line that will serve as an edge in the space cell system.

3. Consider now an edge in the material system.
In the general case three faces intersect on this edge
(the special geometry when there are four or more
faces joining the same edge will be discussed a few
lines below). The three faces define three edges in the
space cell system in such a way that they form a closed
triangle; this triangle will be a face in the space cell
system.

(Returning to the special case when four or more
material faces determine the same edge, notice that in
this case the corresponding space-edges form a closed
spatial polygon. This polygon has to be triangularized.
To do this, add an imaginary small disturbance to the
position of grains in order to destroy the speciality
of the geometry; this way the material edge will be
split into separate edges each of them belonging to
three faces, while new faces will also appear. Now
the problem is reduced to the general case. It should
be mentioned that in general there are two or more
different ways for splitting a multiple edge; any of
them can arbitrarily be chosen because the solutions
are equivalent from the mechanical point of view.)

4. Similarly, consider next a node in the material
cell system; and consider the edges joining this node.
As shown before, the edges in the material system
correspond to faces in the space system; if the material
edges belong to the same node, the space faces form
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Fig. 2.

a closed cell in the space system corresponding to the
material node.

The definition is, of course, shorter in the 2D case:

1. Nodes of the space cell system are the grain cen-
tres (they correspond to the material cells).

2. Where two material cells have a common face,
the corresponding grain centres should be connected
by a straight line, similarly to the 3D case; these lines
will be the edges in the space cell system.

3. A node in the material system is the common
point of joining faces; the corresponding edges in the
space system form a closed cell. (Triangularization
may be necessary in the case of a special geometry.)

Note that in 2D the cells are triangles, and in 3D the
cells are tetrahedrons so the space cell system consists
of simplexes in any case. Fig. 2 illustrates the space
cell system of a 2D assembly.

The composition and duality of the two systems
raise several beautiful geometrical problems. Since
this paper concentrates on the mechanical description
of the assemblies, the geometrical characterization was
restricted here to only a summary of the most im-
portant features whose knowledge will be necessary
for the definition of mechanical state variables. How-
ever, another paper is under preparation about the ex-
act mathematical formulation of the two systems. It
will discuss problems like triangularization, bound-
aries, positive and negative space cells, etc., in detail.

2.3. Geometrical micro-variables

First the micro-variables characterizing the material
system will be defined.

Fig. 3.

Consider a finite sub-assembly, and a material cell
in it around a grain. Some of the faces of the cell
belong to “real” grain-grain contacts; a face like this
contains the contact point itself. The rest of the faces
are considered to belong to “virtual” contacts (there
is no contact between the grain and its neighbour, but
their material cells have a common face); in these
cases an arbitrary internal point of the face has to be
chosen as the virtual contact point. The vector showing
from the centre of the grain into the grain’s c-th (real
or virtual) contact point will be denoted as »;.

Assume that the G; and G; grains have a (real or
virtual ) contact, ¢. The vectors V,-" and v,-zc show from
the corresponding grain centres to the contact point.
The branch vector assigned to the contact is defined as

I = Vilc - Vizcv
as illustrated in Fig. 3 for 2D. In the special case when
¢ is on the boundary of the sub-assembly (so it is
a contact between a grain and the neighbourhood of
the sub-assembly), the branch vector is defined to be
equal to »{ (see again Fig. 3).

Now turn the attention on the characterization of
the space cell system.

Consider a space cell and number its nodes as
1,2,...,(D 4+ 1). (The cell is a simplex so it has
(D + 1) nodes.) Denote the faces of the cell by the
number of that node which is not contained by the
face (i.e. the k-th face contains all the nodes except
the k-th node). Assign a vector b¥ to each face in the
following way:

- The magnitude of ¥ is equal to the area of the face

(or length in 2D).

- The direction of b¥ is normal to the face, pointing
outwards.

(It can easily be proved that 3" p+! b% = 0 for any cell,

for both 2D and 3D.)
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Fig. 4.

The next vector, a¥, is defined as

1
a,’f = —Bbf .
These vectors are illustrated in Fig. 4 in 2D.

The a¥ vector is the basis of the definition of the
most important geometrical micro-variable of the
space cell system: the so-called complementary area
vector. To construct it, consider a pair of grains, G,
and G,, that have a (real or virtual) contact, so the
two grain centres, 1 and 2, are connected in the space
cell system. Collect now all those space cells that
contain this edge. Assume that altogether T cells were
found; denote them as cell(1), celi(2), ..., cell(?),
... cell(T). In the next step calculate the difference
al” — @ separately in each cell from t = 1 to T;
after summation over all space cells containing the
1-2 edge, the complementary area vector

T
1
12 _ 1(1) 2(1)
d; =51 ,E_] (ai —a; )

is given. (Its dimension is area in 3D assemblies and
length in 2D.) This vector characterizes the local ge-
ometry of the neighbourhood of the 1-2 edge.

Fig. 5 is an illustration in 2D where the 1-2 edge
belongs to two cells shown by solid lines. The direc-
tion of d}? is as shown, and its magnitude is equal to
the one-third of the dotted length. A similar - though
more difficult to visualize — meaning can be found for
d}? in 3D too.

The vectors introduced above (I, af-‘, dry will
strongly be relied upon in the coming sections.

3. Strain

This section introduces the suggested definition
of the strain tensor in granular assemblies. Since
the definition is built up with the help of the aver-
age displacement gradient tensor of continua, first
the continuum-mechanical concept will shortly be
recalled; then, based on the space cell system, the
definition will be given for a granular material.

3.1. Continuum

A continuous displacement field, u; (x;) is given on
a closed continuous domain (the vector u;(x;) de-
notes the translation of the point having the position
x; before the displacement). As illustrated in Fig. 6,
V is the volume of the domain, § is its surface, and
n; is the outwards unit normal vector on S. Let ¢;; =
e;j(xt) denote the displacement gradient tensor:

L
v ox j )
According to the Gauss-Ostrogradski theorem, the vol-

ume average of e can be expressed as a surface inte-
gral on S: B

1 1
é,-j=V///e,-jdV= V//u,njds. (1)
vy (&)

If the domain is divided into subdomains (see Fig.
7), an average displacement gradient tensor can be
calculated separately for each subdomain:
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It is easy to see that if the domain and the displace-
ment field is continuous, the volume-weighted aver-
age of the e‘{“j tensors will lead to the same expression
as (1):

é,'j‘—‘-l/-zvl‘éf}-=%/'z // uinde

L W \7 e

é//u;njds. (2)

($)

Its skew-symmetric part is the average rigid-body
rotation of the whole domain (i.e. the volume-
weighted average of the rotations of individual subdo-
mains); the symmetric part reflects the deformation
of the domain and is named the strain tensor in the
usual terminology.

3.2. Granular material

To find a state variable that can properly reflect the
deformations of granular assemblies, our method is to
replace the assembly by an equivalent continuum so
that Eq. (2) could be applied; then after discretizing

v v

\ (]

Fig. 8.

return to an expression of the displacement gradient
tensor that contains the discrete micro-variables only.
In this approach the application of the continuum-
mechanical formalism is a tool for the averaging of
the micro-variables - the resulting state variable is al-
ready of a discrete nature.

Expression (2) can be applied if the geometrical
features of the equivalent continuum (division into
subdomains, S, n;) are clarified, and if a continuous
displacement field (characteristic for the real displace-
ment system of the assembly) is created on it.

Fig. 8 illustrates why the space cell system is the
natural basis for the geometrical modelling. As shown
here for simple compression and for simple shear, the
global deformation of the assembly is very well rep-
resented by the deformations of the space cells since
they characterise the distortions of the internal struc-
ture itself, instead of an individual grain or contact.
(Note that the deformations of space cells do not loose
their meaning even if there are topological changes,
for example, contacts lost or created in the assembly.)

A continuous displacement field can be defined for
any finite set of space cells in the following way. On
the nodes of the simplexes let u;(x;) be equal to the
translation of the grain centre while inside the sim-
plex u;(x;) is defined as the linear interpolation of
the node translations of that simplex. The u;(x;) field
assigned to the assembly this way is piecewise linear
inside the simplexes and along the faces and edges,
and continuous throughout the whole system.

So consider now the L-th space cell whose average
displacement gradient tensor is

_ 1
ef}:W// u;n; ds,
(shH

which, using the fact that u;(x;) is linear along the
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boundary, can be written in the following discrete
form:

1 D+1
ek = WZufaf, (3)
k=1

where VL and S are the volume and boundary of
the L-th simplex, the index k runs over the nodes of
this simplex, u? is the translation of node &, and a
was defined in Section 2. Since the sum of a¥ vectors
belonging to a simplex is zero, expression (3) can be
modified by distracting the same «? vector from each
nodal displacement of the cell:

D+1
[

—L P —
;=
k=1

(' —uf) aj

(its physical meaning is that the rigid-body transla-
tions do not change the deformation of the cell). Let
u? be chosen as the average translation of the nodes:

D+1
0 1

Uy = u;,
D+1 an

which gives that the average deformation gradient ten-
sor of the L-th cell is

1 1
&= oy 2 (W =) (¢ —a)
m<n

so after introducing the notation Au™ = ul" —u?, sum-
ming over the whole system and according to the def-
inition of d™ in Section 2, the average displacement
gradient tensor is expressed by the relative displace-
ments of the pairs of nodes forming the edges of the
cells:

&= % > Aumdr (4)
m<n

(the summation runs over all edges of the space cell
system). Expression (4) contains discrete micro-
variables only: relative displacements of neighbouring
nodes and the corresponding complementary area vec-
tors. The skew-symmetric part of this tensor reflects
the average rigid-body rotation of the space cells.
The symmetric part — similarly to the continuum-
mechanical variable — expresses the deformations of
the cells, and it is suggested to be the strain tensor of
granular assemblies.

4. Stress

This section introduces the definition of the stress
tensor in granular assemblies. As an introduction to
that, a calculation of the average stress in a continuous
domain divided into subdomains will be summarized
in Section 4.1; then the stress definition for granular
materials will be shown with the help of the material
cell system.

4.1. Average stress in continuum

Consider a closed continuous domain with volume
V loaded on its boundary S by a distributed force
pi(x;). Depending on the loads a oy; = o7 (x¢) stress
tensor belongs to every point of the domain satisfying
the boundary conditions

aijnj = pi,

where n; is the outwards unit normal vector on S. The
volume average of the stress tensor can be expressed
- with the help of the Gauss-Ostrogradski theorem -
as a surface integral:

c‘r,-,-:—l‘;///aijdV:‘l///x,-pde. (5)

) ($)

If the domain is divided into subdomains, the aver-
age stress tensor can be calculated separately for each
subdomain:

_ 1
0',';=Y/-z// x,-pde,

(54

where VE and S are the volume and boundary of the
L-th subdomain, distributed forces p;(x;) act on St
from the neighbouring subdomains and the external
boundary. To get a global average, volume-weighted
averages of 5-{; can be calculated and it results in the
same expression as (5):

_ 1 _ 1
G'ij'—.‘—‘;ZVLO'IL-:V /szJdS
@ @ \7

1
=V//x,'pde.

5
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In those cases when there are concentrated forces
instead of the distributed loads acting on the boundary
of the domain and between the subdomains, the above
expression can be written in a discrete form. Denote
the forces acting from outside as F}, F?,...,F¥,...;
they act at boundary points x}, x?, ..., x¥, . ... Expres-

sion (5) is modified as

. 1 k pk
o= V%xiFj (6)

(the index k runs over the external loading forces).
Now consider the L-th subdomain; the forces F}, F?,
..., Ff,... act on its boundary at the points x},x,?,

..,x{,...; (partly from the neighbouring subdo-
mains and partly from outside). So the average stress

here is

1
= L §
(c)

Since the forces inside cancel out in the summation,
the volume-weighted average for the whole domain -
as already seen in (6) - is:

g = %ZVL&I!} = %Z (foFf)

(L) (L) (c)
1
= 2_xFf. (7)

(k)
4.2. Granular material

Now turn to the definition of the stress tensor
in granular assemblies. Consider any finite sub-
assembly; expression (7) will be used for finding
the proper stress tensor to describe the state of the
material.

Our aim is to find a definition based on the con-
tact forces between the grains, and on the geometrical
characteristics of the assembly. Obviously the mate-
rial cell system is the proper basis for this task: mate-
rial cells divide the space into subdomains in such a
way that contact forces act between them, so the above
derivations and the result in (7) are directly valid. In
this case V% is the volume of the L-th material cell;
f; is its average stress; x{ is the co-ordinate of the
contact point where the Ff contact force acts. (If the

Fig. 9.

contact is virtual, Ff = 0 of course; and if the contact
is on the boundary, FY is a force acting from outside.)

Now expression (7) will be transformed into a form
containing discrete micro-variables only. First, the x{
vectors can be decomposed into two parts, as shown
in Fig. 9,

c _ L c
xi—in+Vl',

where x5, is the co-ordinate of the centre of the L-th
grain. In lack of body forces the equilibrium equation
2 (o) F; =0holds, so

> x{F; =) viF;. (8)

(c) (c)

In the double sum in (7) each contact is considered
twice, except from the boundary contacts. So instead
of the »§ vectors we can apply the branch vectors
defined in Section 2, hence

- 1 _ 1
o=y 2 Val=y D KF 9
(L) )

(it is easy to show that in lack of body moments this
tensor is symmetric).

Expression (9) is clearly equivalent with the previ-
ously existing results summarised in Section 1, found
from different theoretical considerations. So our sug-
gestion is to use the form (9), which is based on the
material cell system, as the definition of the stress ten-
sor of granular assemblies.
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Fig. 10.

5. Duality of the state variables

A definition of the state variables in terms of dis-
crete micro-variables was suggested in the previous
sections:

_ [
€;ij = —‘; ;) Aulcdj s (10)

- . ] C C
a,»_,-v§1,.Fj. (11)

The two forms show a strong duality. Summation
with index c¢ runs through the same contacts in both
cases (except for the boundary, see below); contact
forces belong to the same pairs of grains as the relative
displacements; and the product of the two geometrical
parameters is a volume (in 2D an area) characteriz-
ing the geometry of the local neighbourhood of the
contact.

But the duality is not complete since expressions
(10) and (11) cannot belong to the same domain.
The strain tensor is the average of the strains in the
space cells; so the boundary of a domain where strain
is meaningful has to go through the centres of the
particles. The solid lines in Fig. 10 illustrate the two
possibilities for this type of boundary. On the other
hand, the stress tensor is the average of stresses in the
material cells, so any domain where stress is defined
is built up of material cells (the dotted line in Fig. 10
shows that this type of boundary is always different
from the previous ones).

Fig. 11 illustrates this phenomena too. The small-
est unit where stress is defined is the individual ma-
terial cell (solid line in the middle), but strain is not

Fig. 11.

defined here: the nearest domain where the strain ten-
sor is meaningful is shown by the dotted line. The
next stress-type boundary is illustrated by a solid line
again. This process can be continued, and increasing
the two types of domains further and further, the dif-
ference between them, compared to the domain size,
decreases. In the limit of going to infinitely large do-
mains the difference tends to zero as the granular as-
sembly tends to the continuum.

The fact that the two types of domains differ from
each other seems to be a fundamental characteristic of
granular assemblies in contrast to continua. Its physi-
cal meaning is that while the deformations of the ma-
terial are carried on principally by the voids between
the grains, the loads and stresses are transmitted by
the grains themselves.

6. Concluding remarks

A microstructural definition of stress and strain ten-
sors was suggested for granular assemblies in this pa-
per. Stress was defined as the average of the stresses
in the material cells; and strain was given as the av-
erage strain of the space cells. This definition is sup-
ported by the physical experience that while the forces
acting on an assembly are resisted by the grains (the
grains correspond to the material cells), the deforma-
tions are carried on by the internal structure and the
voids (reflected by the distortions of the space cells).

As the next steps, our researches focus on two prob-
lems within the search for the relationship between
stress and strain. First, statistical studies are carried
on recently to predict the characteristic distributions
of micro-level variables (contact forces, relative
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displacements, geometrical micro-variables) if the
macro-level state variables are prescribed. Features of
these distributions are expected to be indispensable in
the constitutive equations of granular assemblies. Sec-
ond, theoretical efforts concentrate on the analysis of
particle rotations, a phenomena of fundamental im-
portance in discrete systems. Since particle rotations
relate the relative displacements at the contacts to the
translations of grain centres, they seem to have a pe-
culiarly important role in establishing a link between
the two complementary geometrical systems and, in
the future, in finding the stress—strain relationship.
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