
Composing Transformations

 Typically you need a sequence of transformations to
position your objects p y j
 e.g., a combination of rotations and translations

 The order you apply transformations matters!
d l e.g. rotation and translations are not commutative

Translate (5,0) and then Rotate 60 degree

OR

Rotate 60 degree and then translate (5 0)??Rotate 60 degree and then translate (5,0)??

Rotate and then translate !!

Composing Transformations - Notation

 Below we will use the following convention to explain
transformations

=

Column vector as a pointMatrix applied to left of vector

I am not concerned with how the matrix/vector is stored here – just focused on
mathematics (but for your information OpenGL fixed function pipelinemathematics (but for your information, OpenGL fixed function pipeline
stores matrices in column major order, i.e., m[0][0] = m11, m[0][1] = m21,
m[0][2] = m31, …)

Composing TransformationsComposing Transformations -
Concatenation

 There are two ways to concatenate transformation
matrices

Pre and Post multiplication Pre- and Post-multiplication

 Pre-multiplication is to multiply the new matrix (B) to
the left of the existing matrix (A) to get the result (C) g () g ()
 C = B * A

 Post-multiplication is to multiply the new matrix (B)
to the right of the existing matrix (B)to the right of the existing matrix (B)
 C = A * B

 Which one you choose depends on what you do y p y
 OpenGL fixed function pipeline uses post-multiplication. I

will explain why (and this is what we will use)

Two ways to think of a sequence ofTwo ways to think of a sequence of
transformations

 How you think of it determines how you should
concatenate the transformation matrices together
(pre- or post-multiplication)

 Both will work but sometimes one is more convenient
than the otherthan the other

Transform with respect to theTransform with respect to the
global origin and basis Transform with respect to the local

Origin and basis

Think of transformations with respect toThink of transformations with respect to
the global (world) coordinate system

 Everything you do is relative to the global origin and
the basis

30o

 In this case you should pre-multiply the matrices

Step 3 (S):
Scaled by (0.5,0.5)

Step 1 (R):
Rotated by 30o

Step 2 (T):
Translated by (2,0)

 In this case, you should pre multiply the matrices
together v ’ = M X v = S X T X R X v

Think of transformations as transformingThink of transformations as transforming
the local coordinate frame

 Every thing you do is affecting the position and the
orientation of the local coordinate frame

30o

In this case you should post multiply the matrices

Step 3 (S):
Scaled by (0.5,0.5)

Step 1 (R):
Rotated by 30o

Step 2 (T):
Translated by (2,0)

 In this case, you should post-multiply the matrices
v ’ = M X v = R X T X S X v

Which way should I think?

 Of course, both ways will work so it is up to you
 Two methods will give you the transformation Two methods will give you the transformation

sequence in the opposite order
 It is generally much easier to control the object if you

think of the transformations as moving the local
coordinate frames

This is how the OpenGL fixed function This is how the OpenGL fixed function
pipelined does things!!

 In other words OpenGL fixed function pipeline In other words, OpenGL fixed function pipeline
use post-multiplication

OpenGL Post-Multiplication

 OpenGL post-multiplies each new transformation matrix
M = M x Mnewnew

 Example: perform translation, then rotation
0) M = Identity
1) translation T(tx ty 0) > M = M x T(tx ty 0)1) translation T(tx,ty,0) -> M = M x T(tx,ty,0)
2) rotation R() -> M = M x R()
3) Now, transform a point P -> P’ = M x P

= T(tx, ty, 0) x R() x P

OpenGL Transformation

 When use OpenGL, you need to think of
object transformations as moving itsobject transformations as moving its
local coordinate frame
ll h f f d All the transformations are performed

relative to the current coordinate frame
d borigin and basis

Translate Coordinate Frame

Translate (3 3)?Translate (3,3)?

Translate Coordinate Frame (2)

Translate (3,3)?

Rotate Coordinate Frame

Rotate 30 degree?

30 degree

Scale Coordinate Frame

Scale (0.5,0.5)?

Compose Transformations

Transformations?

45
o

Answer:

1. Translate(7,9)

(7,9)

45 (,)
2. Rotate 45
3. Scale (2,2)

Another example

How do you transform from C1 to C2?
C1

60 o
Translate (5,5) and then Rotate (60)

C1

C2

(5,5)

60
OR

Rotate (60) and then Translate (5,5) ???

Answer: Translate(5,5) and then
Rotate (60)Rotate (60)

Another example (cont’d)

If you Rotate(60) and then Translate(5,5) …

60 o

55

C1 C2

60 o

You will be translated (5,5)
relative to C2!!relative to C2!!

Transform Objects

 What does coordinate frame transformation
have anything to do with objecthave anything to do with object
transformation?
 You can view transformation as to tie the You can view transformation as to tie the

object to a local coordinate frame and
move that coordinate framemove that coordinate frame

Example

Think of transformations asThink of transformations as
moving the local coordinate frame as
Well as the object

1) Translate (5,0)
2) Rotate () 60

o

60
o

) ()60

(5,0)

If you think the other way

fTransformation as moving
the object relative to the origin of a
global world coordinate frame g

60
o

(5,0)

1) Rotate ()
2) Translate (5,0)

60
o

(5,0)
Exact the opposite order

Put it all together

When you use OpenGL …
 Think of transformation as moving coordinate Think of transformation as moving coordinate

frames
 Call OpenGL transformation functions in that Call OpenGL transformation functions in that

order
 OpenGL does post-multiplication of matrices OpenGL does post multiplication of matrices
 The accumulated matrix will be multiplied to

your object verticesy j

