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1 Tetrahedron shape function

1.1 Notations

e ¢ = [z y 2|7 : Cartesian coordinates

® ;) = [Tip Yir zix)" with &= {1..4} : nodes coordinates for an arbitrary i-th tetrahedron.

L;;(x) with k = {1..4} : volume coordinates of the arbitrary i-th tetrahedron

N, k(x) with k = {1..4} : shape functions of the arbitrary i-th tetrahedron

e V; : volume of the arbitrary i-th tetrahedron

1.2 Volume coordinates

We introduce the special coordinates:

T =L; 121+ Lioxio + Li3w;3+ L;4%;4
Yy =Li1yix + LioYio + Liyis + Liayia

2 =Li12i1+ Liazio+ Liszziz+ Liazia

1 :Li,l + Li,z + Li,3 + Lz‘,4

Solving (1) gives the volume coordinates:

@i + bipT + iy + di k2

L = k= {1.4} (2)
’ 6V ’
with:
Iz yin zip
1 ZT;2 i2 Zi92
6V: 2, y’L, 2, (3)
I xiz vz zis3
I g Yia Zia
and
Tio Yi2 Zi2 I yi2 zi2 1 2 zio I T2 Y2
i1 = | Tiz Yz iz |, bii=—|1 vz ziz|,c1=|1 @3z 23|, dip=—|1 T3 yi3
Tia Yia Zia 1 yia zia 1 24 zia I T4 via



Tin Wil Zid I yin zia I x1 2 I 21 yin
Qi = —| L33 Yi3 <3 |, bz‘,z =1 Yiz Zi3 |, Cia= — 1 i3 Zi3 |, di,Z =1 i3 Yi3
Tia Yi4 Zia 1 Yia zia 1 @ia zia I Tia Yia
Til Yl Zid I yin 2 1w oz I i1 wia
;3 = | Ti2 VYi2 Zi2 |, bi,3 =—|1 Yio Zi2 |, 3= 1 Ti2 Zi2 |, di,3 =—|1 Ti2  Yi2
Tig Yia Zid I Yia zia 1 x4 2 I x4 Yia
Til Yil Zi I yin zia Iz zin I i1 win
Qia=—| Tiz Yiz Zi2 |, bia=|1 Yiza Zi2|, cia=—|1 @i zi2 |, dia=|1 T2 Yio
i3 Yi3 Zi3 1 yiz zig3 1 i3 zi3 I i3 i3
Fun fact:
volume(P234) volume(P134)
Li,l - % ) Li,? = % 3

1.3 Shape functions
We simply have




2 Global Digital Image Correlation

2.1 Formulation of the problem

2.1.1 Notations

An image is define as a scalar function that gives gray level at each discrete point of space.

T spatial coordinates

o x =[xy 2|
e f(x): reference image
o Vi(x)=[fs(x) fy(x) f.(x)]": gradient of the reference image

e g(x): deformed image

o u(x) = [uy(x) uy(x) u.(x)]’: displacement field

2.1.2 Strong form

The reference and the deformed images can be related through the displacement field by:

g9(®) = f(z + u(z)) (6)

which requires the conservation of the optical flow.
Assuming that the reference image is differentiable (Important: see Besnard, Hild and Roux 2006), a
Taylor expansion to the first order can be yield:

9(®) = f(x) +u(x) - V[(z)+n, (7)

where 7 is the error to become minimized.

2.1.3 Weak form

To estimate u(x) the quadratic difference between left and right members of the strong formulation is integ-
rated over the studied domain {2 and subsequently minimized:

7= / (@) - V(@) + fla) - gla)? d0 (8)

(Actually your are making 2 different steps: First, you are accepting an error in Eq. 7. Second you are
squaring and averaging the error.)

2.2 FE discretization

The support is defined by the set of neg FE and n nodes. This allows to split the integral of the error by a
sum of integrals of each tetrahedron,

Nel Tel

EDMEDY / @) V(@) + /(@) ~ o(w) i (9)



Please, notice that no approximation has been practiced yet. Indeed, the approximation comes from the
consideration of constant magnitudes among the FE,

Mel

U= Z [u(@:) - (V) () + {f — g) ()] Vi, (10)

where (-) denotes a convolution, to be defined yet. i.e. the closest pixel to x;, the average along the whole
FE, an actual convolution from the image data...

2.2.1 Discretized displacement

The FE displacement u(x;) is computed from the displacements at the finite element nodes, d, = [daz da, daz] T
and the shape functions N,(x;). The number of degree of freedom is nq.f = 3 X n.
The displacement field is discretized as follow:

ZN mz a — ( Z)d (11)

with:
Ni(x;) 0 0 Ny (z;) 0 0 oo Np(z) 0 0
N(x;) = 0 Ni(x;) 0 0 Ny (z;) 0 N, () 0 (12)
Sxmor 0 0 Ni(z;) 0 0 Ny (z;) 0 0 N, ()
and .
\cﬁ/ = [ dy, di, di, dy, dy, dy, ... dn, dn, dn, } (13)
Ndof X 1

Here an abuse of notation has been practised. Indeed, N, (x;) = N; x(;), are the shape functions associated
to the i-th FE, which contains the point x;. Along this line, all the shape functions associated to nodes that
don’t belongs to the i-th FE are null.

2.2.2 FE formulation

The discretized version of the functional  can be written:

Mel

W= [N(x)-d-(Vf(@))+(f - g(x))]" V.. (14)

=1

Minimizing n? leads to the resolution of:

——22 A (V) (@) + f — g) (@)] [NT(@) - (V) (@)] V;

Ndo f><1

=2 Z V) ()] [N (@) - (V) ()] Vi + (f = g) (@) N () - (V [) () Vi

=2 (Z [N (@) (V1) (2] - [(V)7 (@) N@)] Vid+ 32 (f = 9) ()N (@) - (V) <wi>vi)
pu— O B B
(15)



Finally, the system to solve is:

Md=F
with the “stiffness” matrix

Tlel

M = [NT(@) (V) @)] - (VA (@) N(w)

NdofXNdof =1
and the right hand side vector:

MNel

=Y {f—9) @INT (@) - (V) ().

Ndof X 1 i=1

2.2.3 Elementary stiffness matrix

The elementary stiffness matrix have the following general expression:

M o = / () Nofa) o ) o )0

(18)

(19)

with o and § being iterators for the spatial direction (z,y,z) and a and b being iterators for the nodes

(1,2,3,4) (in their local numerotation).

It of size 12 x 12 (number of nodes x number of spatial dimensions) can be decomposed in 4 x 4 (number

of nodes) sub-matrices M¢, of size 3 x 3 (number of spatial dimensions) as follows:

MYy, Mj, Mfi; Mj,
sym M§2 M§3 M§4

M= Gm sym Mg, M,
sym sym sym MY,
where
fo(@)? [o(@)fy(2)  folz)fa(2)
MZb:/ Ny(x)Ny(x) | sym () fy(@) () | dQ
2 sym sym 3(w>
V@)@V (@)

2.2.4 Elementary second hand vector

The elementary second hand vector have the following general expression:

Fe, = / (9(@) — F(@))Na(@) fo(@)d2

(21)

(22)

with a being an iterator for the spatial direction (z,y, z) and a being an iterator for the nodes (1,2,3,4) (in

their local numerotation).

It is of size 12 x 1 (number of nodes x number of spatial dimensions) can be decomposed in 4 x 1 (number

of nodes) sub-vectors F*, of size 3 x 1 (number of spatial dimensions) as follows:



Fy

Fe = % (23)
P,
where
il
Fi = [ (@) = g@) V@) | Hla) | i 24
e f-(z)
Vi)

2.3 The role of the image gradient

From Eq. 7 it is quite evident that the image gradient plays a main role in the linear system arranged
afterwards. Herein it is demonstrated that null gradient components lead to singular matrices. To this end,
we focus on an arbitrary point, x4, associated to an arbitrary A-th mesh node. The linear system matrix
should then takes the form

NJNJ—lfg? NJNJ—lfJ:fy NJNJ—lfxfz

Tlel NJlefofz N}f;? Ngf:;:fy N;fzfz NJJrlNszfx
M = NJlenyfz N}fyfx Ngf; N}fyfz NJJrlNnyfx ) (25)
i=1 ]\/YJfl]\[sz2 N}fzfx N;fzfy N3f3 NJJrlNszfz

NyyiNsf2 NpaNyfefy NigaNjfof-

where both, the shape functions and the image derivatives, are evaluated at x;.
Now let’s define a characteristic length of the mesh, h, which features the distance between nodes in the
mesh, such that we can assert

Vi) = Vf(xa) + O(h), (26)

with h decreasing when the mesh resolution is improved. Thus, if a component of the gradient is null,
fz(x4) = 0 for instance, then the matrix takes the form:

O(h) NyNy_1fufy NsNj_1fof.
e o) o) Oh) O(h) O(h)
M = NJ—lNnyfz O(h) N}fi N;fyfz NJ-i-lNnyfx ) (27)
i=1 N;_1N;f2 O(h) Nif.f, Nif? NyyNsf.fa
O(h) NyNjiifefy NiNyfof-

which becomes singular in the continuous, h — 0. In practice, the matrix becomes singular in the very first
moment a component of the gradient vanish within all the mesh elements that own a common node.



2.3.1 Meaning of the gradient-lead singular behavior

Actually this singular behavior is not unique of G-DIC, but happens in all methods without a regularization
factor. That’s because explicitly minimizing Eq. 7 actually leads to infinite solutions,
Vf(x)

n=0—u(x)=(9(x) - f(x)) IR + kn(z), (28)

with n(x) - V f(x) = 0 and k an arbitrary constant. In many methods k = 0 is selected.
The singular behavior described above is nothing else but a situation where n is aligned with an axis, x,
y or z. Possible solutions are:

1. Applying a homogeneous Dirichlet BC, i.e. d4-n4 s =0

BdA :O

2. Applying a homogeneous Neumann BC, i.e. s

3. Introducing a regularization term



3 Test

3.1 Displacement and Rotation limits Mickey Mouse

Image = 2563

Correlation Length = 51.2px

Border = 26px

At 15px rigid displacement, fail, at 15° also (34 pixels at the edge)

3.2 Displacement and Rotation limits Serious (but without Dynamics — strange!)

Going to try a number of random fields with different correlation lengths.

In ER’s mind: One random field realisation is 1x1x1 bananas (800x800x800 nodes).

Gaussian Variance set to centred (on zero) Gaussian distribution, giving more or less a spread of £3 greylevels.
Turning it into a 16b image between +4.

Correlation lengths vary: Bananas: {1.00, 0.50, 0.10, 0.05} Pixels: {800, 400, 80, 40}

We make variations of:

e [: correlation length
e b: border size |px]
o t =t t, t,]: translation vector |px]|

e r =[r, r, r.]: rotation vector [deg]

d: Mesh density

n: Number of iteration before convergency (0.1%)

L]b ¢ rd

8025 [500] [000] 50
8025 [1000] [000] 50
8025 [1500] [000] 50
8025 [2000] [000] 50
8050 [2000] [000] 50
4025 [2000] [000] 50 (6%)

‘o
> g w3
N~—




3.3 Displacements limits (Very Serious)

Random fields distribution: Standard normal distribution (Gaussian with zero mean and unit variance)
Random fields covariance function: Gaussian correlation function with correlation length [

The correlated Random Fields are defined over a cube of size 1 with correlation lengths of:
[ ={0.01 0.02 0.04 0.06 0.08 0.1 0.2 0.4 0.6}

and realisations are discretised over 500 x 500 x 500 pixels cubes which corresponds to correlations lengths of

[ ={5 1020 30 40 50 100 200 300} px

l ‘b t r d n
5 130 [100] [000] 50 1
5 130 [200] [000] 50 3
5 130 [300] [000] 50 6
5 130 [400] [000] 50 6
5 130 [500] [000] 50 6
5 130 [600] [000] 50 div
10130 [100] [0OO] 50 1
10130 [300] [000O]| 50 2
10130 [200] [000O]| 50 2
1030 [400] [000] 50 3
10130 [500] [00OO]| 50 5
10130 [600] [00OO] 50 10
10130 [700] [00OO] 50 20
10130 [800] [000] 50 div
20130 [100] [00O0] 50 1
2030 [300] [00O0] 50 2
20130 [200] [00O0] 50 2
20130 [400] [00O0] 50 2
20130 [500] [000] 50 2
20130 [600] [00O0] 50 3
20130 [700] [0O0O0O] 50 3
2030 [800] [00O0] 50 77
20130 [900] [00O] 50 5
2030 [1000] [00O] 50 7
20130 [1100] [000] 50 11 (divat 0.2)




a)l:5px | (b) 1 =10 px (¢) 1 =20 px

(d) 1 =30 px (e) 1 =40 px (f) 1 =50 px

(g) 1 =100 px (h) 1 =200 px (i) 1 =300 px

Figure 1: Slices of 500 x 500 x 500 vx realisations with various correlation lengths

10



l ‘ d b Maxt, n commentaire

5) 30 30 3 5 conv lentement
10 |30 30 5 4

20 |30 30

30 |30 30

40 |30 30

50 |30 30

100 | 30 30

200 | 30 30

300 | 30 30
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