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Faculty of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, 

The Netherlands 

(Received 18 July 1995; in revisedform 3 October 1995) 

Ah&act-The analysis of strain localization and damage evolution in materials requires appropriate 
experimental techniques to verify the complex material behaviour in the damaging zone. Modern 
techniques are now available to measure the displacement fields in small zones of a material, and a 
complementary procedure is needed to derive the accompanying strain fields. The knowledge of the 
local strain fields gives direct information with respect to the applied constitutive model and serves 
as initial. input for most parameter estimation procedures, while the tine-tuning of the model 
parameters should be done by comparing the computed and measured displacement fields. This 
study presents a theory to compute strains from the displacements in a discrete set of points and is 
particularly useful in the post-processing of experimentally measured displacement fields. The theory 
is fully elaborated, and some practical examples are given. A comparison is made with some 
analytical solutions, and the effect of noise on the input data is evaluated. Copyright 0 1996 Elsevier 
Science Ltd. 

1. INTRODUCTION 

In recent years, it has been recognized that the mathematically consistent description of 
failure and the accompanying localization phenomenon requires higher-order continuum 
models or the addition of viscosity in the constitutive description (for an overview see, for 
instance, de Borst et al., 1993). If such an enhancement is not made, ill-posed boundary 
value problems result, which cannot properly represent the physical failure process. The 
quoted remedy, namely the introduction of higher-order continuum descriptions, invariably 
introduce one or more additional material parameters, the number depending on the type 
of enhancement (non-local, gradient or micro-polar continua) or the specific constitutive 
setting (e.g., damage or plasticity). In any case a material parameter is introduced that has 
the dimension of length, and which is related to the dimensions of the localization zone. 

A problem now resides in the determination of this characteristic length, since it cannot 
be measured via simple tests, in which one tries to achieve uniformity of the specimen. 
Evidently, homogenous deformations do not trigger strain gradients, and the higher-order 
deformation terms then vanish, and so does the influence of the characteristic length 
parameter. Accordingly, the proper determination of the characteristic length parameter 
can only be carried out for non-uniform tests, whereby the size and the strain distribution 
in the localization zone are determined accurately by local measurements, and subsequently 
compared with the results of numerical simulations using a specific enhanced damage or 
plasticity model. 

Experimental techniques that can measure locally are often based on optical methods, 
e.g. the Electronic Speckle Pattern Interferometry ESPI (Bergmann et al., 1995 ; Galanulis 
and Ritter, 11993), or the Hentschel Random Access Tracking System (Zamzow, 1990). 
Alternatively, length transducers or magnetic resonance imaging can be used, e.g. the 
measuremenlt of strain fields in the walls of the heart (Hunter and Zerhouni, 1989). These 
methods provide information of the displacements at discrete points on the surface of the 
body, and are therefore well-suited for relatively thin structures. However, in continuum 
mechanics-based theories such as continuum damage mechanics (CDM) knowledge of the 
strains is often required, e.g., for the determination of threshold levels of damage. 

t Also at Faculty of Civil Engineering, RMA, Brussels, Belgimh. 
$ Also at Faculty of Civil Engineering, Delft University of Technology, Delft, The Netherlands. 
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For the determination of strains on basis of these experimentally acquired displacement 
data (Peters, 1987) has presented a method in which the local differences in the dis- 
placements have been expanded in a Taylor series, which was truncated after the first, linear 
term. While giving good results for slowly varying strain fields, this method is insufficient 
in the presence of steep strain gradients, or near edges, either external, or internal (cracks). 
For the accurate determination of strains on the basis of discrete displacements an improved 
method is called for, which is the subject of this contribution. After outlining the notation 
used in this study, the improved method will be derived in detail. Next, an accuracy 
assessment will be given of the method presented by Peters (1987) and the approach 
developed here. Attention will also be given to the possible effect which corrupted data 
may have on the accuracy. 

2. NOTATIONS AND CONVENTIONS 

Throughout the theoretical elaborations the following notations will be used, with 
their definition in a Cartesian coordinate system between parentheses : 

Scalar 
Vector 
Second-order tensor 
Third-order tensor 
Fourth-order tensor 
Dyadic product 
Inner product 
Double inner product 
Triple inner product 
Quadruple inner product 
Inversion 
Conjugation 
Estimate of a tensor 
Finite difference 

( = ai) 

( = A,) 
( = AijJ 
( = A jj.d 
( = Ai$d 
( = Ai$jk) 
( = A,B,) 
( = AijkBkjJ 
( = Aijk,B& 

The theoretical elaborations in the next section are entirely based on a 2D-continuum, 
deformed in its plane. The behaviour of the material is characterised by the displacements 
of a discrete set of points at the surface of the material. The material coordinates, rep- 
resenting the initial configuration at time t = 0 of the representative particles of the 
continuum, are designated with upper-case letters or X in vector notation. The spatial 
coordinates, representing the configuration at time t, are designated with lower-case letters 
or x, in vector notation. The coordinate systems for material and spatial coordinates are 
considered to be superimposed with rectangular Cartesian coordinate axes. At time t = 0, 
X may then be written as 

x = xg. (1) 

Using this coordinate systems all material coordinates will now be denoted by their spatial 
coordinates at time t = 0, x0. 

3. FORMULATION OF THE METHOD 

3.1. Gradient deformation formulation 
Consider two neighbouring particles, which occupy the points PO and Q,, in the plane 

2D-continuum at time t = 0. The position vector of PO is identified by x,, while the position 
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Fig. 1. Infinitesimal deformation in the 2D-plane. 

vector of Q,, can be written as x,, + dx,. At time t, after deformation, the two particles move 
to the points P, and Qt identified by x, for P, and x,+dx, for Qt (Fig. 1). 

The deformation tensor in P, at time t is now defined as : 

dx, = F.dx, (2) 

which results in 

F = (V,x,)’ = 2. 
0 

At a fixed time t the actual position vector x, of a point P, can be considered as a function 
of the initial position vector x0. The position vector of a neighbouring point x, + Ax, can be 
written as a vectorial Taylor-series expansion, truncated after the second-order terms : 

Ax, =&Ax,+~:Ax,Ax,+a 
0 cl 

where a reprjesents the theoretical discretization (or truncation) error. Equation (3) involves 
the deformation tensor F = ax/ax (eqn (2)) and the gradient deformation tensor a2x/aX2 
of rank three. The tensor 3G is defined as : 

Using this definition eqn (3) can be rewritten : 

Ax, = F*Axo+3G:AxoAxo+a. (4) 

Consider the central particle at the point P, surrounded by k neighbouring particles at 
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Qq, Qt4 
Fig. 2. Particle distribution around the central point. 

the points Qi (Fig. 2). Equation (4) can now be formulated for each point Q,, involving a 
discretization error ai for each equation. These errors ai can be decomposed in a constant 
average error (for the group of particles in consideration) a and a variable error da, 
determined by the exact position Q,, of each particle. It is assumed that this variable error 
is random and follows a normal distribution (the error is tied to the scattered positions of 
the particles around their mean positions). At least six particles at Qt, are required to solve 
the unknowns in the eqn 4 and thus to determine an estimation for F in P,. If more 
than six particles are available a statistical approach is needed, which will yield a better 
approximation for F. 

Assuming that all particle positions have been measured experimentally, an additional 
measurement error must be taken into account. The left-hand side of eqn (4) can be 
rewritten for each pair (P,, QJ and results in k equations with a right-hand side which 
equalsdi(io[1,2,...,k]): 

di =Ax,i-F~Axoi-3G:Ax,,,Ax0,-a (i~[l,2,...,k]). (9 

The vectors di represent the sum of the stochastic deviation caused by inherent measurement 
errors and the random part 6ai of the discretization error. The measurement errors are also 
assumed to be normally distributed around a constant systematic error. This constant 
systematic error can be added to a, which then represents the sum of the mean discretization 
error and the constant systematic measurement error. The remaining deviations di are 
assumed to be not correlated and normally distributed around the null vector. 

The probability density function for the k observed deviations di in a 2D-plane as 
defined by eqn (5) equals : 

P[d,(ie 1.. .k);a;F] =(2nc~-~e-;f;;,$~*‘~~ (6) 

with di having non-correlated Cartesian components in the X- and y-directions, or 
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Using the maximum likelihood method, the estimates for F, a and 3G can be retrieved by 
maximizing the probability density function with respect to the unknown variables (F, a 
and 3G). Maximizing eqn (6) involves minimizing the scalar function .I: 

J= i d,.d, 
i= 1 

or using eqn (5) : 

J=s~~--~F:W-~~G~ ‘H-2m;a+(F”.F):X 

+2(3G’*F) i 3Y+(3Gc-3G)::4Z+23G! Xa+2F:m,a+ka*a 

with : 

s 11 = ,i, Ax, - ki 

m, = i Ax, 
i= I 

m, = i Axoi 
i=l 

X = i AxoiAxoi 
i=l 

W = i Ax,~Ax, 
i= 1 

3H = i A~o~Axo~Ax,~ 
i= 1 

3~ = 5 AxozAxoiAxoz 
i= 1 

4Z = 5 AxoiAxoiAxoiAxo~. 
i= 1 

Differentiating J with respect to the unknowns F, a and 3G, and setting the result equal 
to zero minimizes J which leads to a system of equations for the maximum likelihood 
estimates P for F, 3e for 3G and B for a : 

l3J 
--=~o-W++~P++Y:~~+~,P=~ 
aF (8) 

aJ 
-=O~ -3H+3yc.~+4Z:3&+X&= 3O 
a3G 

(9) 

aJ 
- = O=s -m,+P*mo+3e:X+k6 = 0. 
aa (10) 

By eliminating ii from the eqns (8X10) the system can be simplified to : 
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3B’.p+dD:3& = 3E 

with : 

A = kX-m,mo 

3B = k3Y -moX 

C = kW-mom, 

4D = k4Z-XXC 

3E = k3H-Xm,. 

The solution of the system of eqns (11)-(12) finally results in : 

where 

P=N’.M-’ 

(11) 

(12) 

(13) 

Strains can now easily be computed by selecting an adequate strain tensor. In this 
analysis, the Green-Lagrange strain tensor will be used throughout all computations. The 
estimate for this tensor is given by : 

g = @+.&I). (14) 

A regular solution of eqn (13) requires regular tensors M and 4D. This condition is 
satisfied if at least six independent particles, delivering 12 displacement components, are 
used. These 12 components are required to solve the equations for the unknown six 
components of 3G, the four components of F and the two components of a. If a is excluded 
from the analysis, only five independent particles are needed for a regular solution. 

3.2. Retrieval of the linear model 
The equations for the linear model (Peters, 1987) can be easily retrieved by removing 

3G from the eqn (7). The third-order tensors 3H, 3Y as well as the fourth-order tensor 4Z 
then vanish. Equation (9) is no longer relevant, and only the substitution of eqn (10) into 
eqn (8) is conserved (eqn (11)). Removing 3G from eqn (11) directly leads to the linear 
solution : 

or 

(kX-m,m,,)*I3” = kW-mom, 

(T k Ax,zAx,i -mom,) * j? = k c Axo,Axli -mom,. 
I 

4. ACCURACY ASSESSMENT OF THE GRADIENT DEFORMATION MODEL 

(1% 

4.1. Numerical simulations 
For an accuracy assessment of the two approaches, a method is required which focuses 

on the inherent deterministic model error. 



Computing strain fields from discrete displacement fields in 2D-solids 4299 

The tests used for the comparison, have been chosen such that a 2D-spatial particle 
distribution has been utilized that approximately matches the 2D-marker distribution of 
existing experiments based on the Hentschel Random Access Tracking system (Zamzow, 
1990). With aid of these quantitative assessments a global, qualitative picture can be 
obtained of the model error for general strain distributions. All simulations have been 
performed on an almost square subarea of 11 by 11 points. The entire zone of 121 points 
covers an area of 3 by 3 cm. The distance between points is thus approximately 3 mm. 

In som’e simulations, the stochastic variation of the distance between the particles 
(observed in experiments) is also taken into account by scattering the particles around their 
mean position with a normal distribution. It will be shown that this has a considerable 
influence on the final results. 

The error analysis that is the subject of subsection 4.3, only concerns the model error 
and not the measurement error which is the subject of a statistical approach. 

4.2. Analytical test fields 
To analyze the performance of both methods five displacement fields with their 

accompanyi:ng strain fields have been adopted : 

(i) A constant homogeneous strain field 
(ii) A quasi-linear syu strain field 

(iii) A quasi-quadratic syu strain field 
(iv) A linear shear strain field 
(v) A higher-order complex strain. 

The first three fields have been simulated on two different particle distributions : 

-A regular distribution with a distance between points of 3 mm. This distribution consists 
of a perfectly square 11 x 11 particle field covering the test area of 3 x 3 cm. The x- and 
y-distances between the particles are fixed and equal to 3 mm. 

-An irregular distribution with a mean distance between particles of 3 mm. This dis- 
tribution simulates the stochastic deviations of the distances between the particles. The 
x- and y-distances are normally distributed around a mean value of 3 mm. 

The shear strain field and the complex strain field have been tested only on irregular 
distributions. 

4.3. Evaluation of the strain models 
To compute the approximated strain field from a discrete displacement field, strain 

groups have to be defined. A strain group is the set of material particles, which surround 
the central particle in which the strains are to be computed, and is used in the theoretical 
model to carry out the strain estimation. More particles in a strain group will give better 
results. Yet, if the distances between the central particle (or marker) and the surrounding 
particles become large, the remaining discretization error rises significantly and will 
adversely influence the computational results. In a square particle pattern, three types of 
particles can be distinguished. The particles in the midfield have neighbouring particles in 
all directions. The edge markers have neighbours on one side, while the comer markers 
limit neighb’ours to a quadrant. The strain groups used in this simulation have eight 
surrounding particles in the midfield, six at the edges, and five in the corners as illustrated 
in Fig. 3. 

The spatial composition of a strain group influences the quantitative results, but has 
no real impact on the qualitative interpretation and the comparison between the two models. 
The specific fselection of strain groups used in these simulations is made by comparison of 
several combinations of strain groups. The current selection mainly involves the particles 
in the immeldiate neighbourhood. This selection gives best results in noise-free compu- 
tations. Some small modifications are recommended, when dealing with noisy data which 
will be discussed in subsection 4.4. 

The simulation of a constant homogeneous strain field is a straightforward test. In this 
case, both models should reproduce exactly the imposed analytical strain field. It is used to 
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check possible implementation faults. Both models satisfied this test perfectly. Figures 4-6 
illustrate the poor quality of a linear approach in irregular meshes and particularly close to 
the edges and comers for a quasi-linear strain field. The same conclusion can be drawn 
from Table 1, which represents the errors relative to the maximum equivalent strain in 
the entire field. However, the regular distribution gives quasi-zero errors in the midfield. 
Discretization errors compensate each other, through their regular spatial distribution in a 
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Table 1. Relative errors on equivalent strain+listance between particles of 3 mm 
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Simulation results : Computed errors, relative to the maximum strain 

Smulated Particle 
strain fields zone 

Linear approach 

Mean (%) Max (%) 

Gradient def. approach 

Mean (%) Max (%) 

Midfield 0.0 0.0 0.0 0.0 
Regular Edges 8.9 19.1 0.0 0.0 

Comers 19.6 21.5 0.0 0.0 
Linear case Global 3.3 21.5 0.0 0.0 

seq., =0.117 Midfield 3.6 10.1 0.0 0.0 
Irregular Edges 10.0 26.8 0.0 0.0 

Comers 18.1 22.6 0.0 0.0 
Global 6.0 26.8 0.0 0.0 

Midfield 1.1 1.2 1.1 1.2 
Regular Edges 15.3 29.4 1.8 2.5 

Comers 32.8 32.8 2.5 2.5 
Quadratic case Global 6.4 32.8 1.4 2.5 

seq_ = 0.25~3 Midfield 2.3 13.4 1.1 1.5 
Irregular Edges 16.1 44.0 1.8 4.9 

Corners 33.3 43.4 1.8 3.8 
Global 7.4 44.0 1.3 4.9 

Midfield 1.6 4.1 0.0 0.0 
Linear shear Edges 4.7 12.0 0.0 0.0 
se&V =0.164 Irregular Corners 10.7 14.1 0.0 0.0 

Global 2.8 14.1 0.0 0.0 

Midfield 3.5 15.1 2.5 5.9 
Complex field Edges 11.2 4.4 1.6 4.5 
EW_ =0.051 Irregular Corners 15.3 26.3 1.4 2.4 

Global 6.1 40.4 2.2 5.9 

linear field as depicted in Fig. 3. The enhanced higher-order approach perfectly simulates 
this linear strain field for all spatial particle distributions. Table 1 clearly shows the zero 
error that is obtained in the midfield, in the edges as well as in the corners. This result could 
be expected since the order of the chosen discretization scheme corresponds to the order of 
the displacement field. 
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Fig. 8. Side view of the analytical exact strain field for quadratic strain distribution. 

Figure 7 shows the exact equivalent strain E,~ (equal to s,J of a quadratic strain, where 
the equivalent strain is defined as : 

When the quadratic 3D-shape is projected on a 2D-plane with normal along the X-axis, 
the parabolic curve of Fig. 8 is obtained. 

Both approaches will now be tested with this quadratic strain field. The linear model 
produces a strain field, which is shown in Fig. 9. The numerically simulated field is super- 
imposed on the analytical solution, so as to enhance the contrast. The model error becomes 
large close to the boundaries of the particle mesh. Even in the midfield, computed strains 
deviate significantly from their correct values. These examples show, once more, that the 
linear model is sensitive to the spatial particle distribution, and cannot produce reliable 
results close to the edges nor in the midfield of inhomogeneous strain fields. The error on 
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Y-direotion [mm] 

Error cm computed equivalent strain 

Fig. 9. Comparison between analytical and computed strain field (linear model). 

Error on computed equivalent strain 

Y-direction [mm] X-dir&Ion [mm] 

Fig. 10. Error on the computed strain field (linear model). 

the equivalent strain is depicted in Fig. 10. The large errors at the edges are striking. The 
same conclusions can be reached when analyzing Table 1. All errors are relative to the 
maximum equivalent strain in the strain field. The values of these maximum effective 
equivalent strains are listed in the first column of Table 1. 

The gradient deformation model constitutes a substantial improvement. The 2D-view 
of the computed equivalent strain field and the analytical correct solution, analogous to 
Fig. 9, is shown in Fig. 11. The approximation is excellent, even at the boundaries and at 
the comers of the particle field. The accompanying error plot in Fig. 12 is represented using 
the same scale as in Fig. 10. 

Table 1 shows that the strains cannot be predicted correctly from an irregular dis- 
placement grid when using the linear model. Regular distributions do not produce reliable 
results with the linear model if non-linear variations exist in the strain field. The mean 
relative erro:r for the quadratic strain field with a regular grid reduces from 6.4% for the 
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Fig. 11. Comparison between analytical and computed strain field (gradient deformation model). 

Error on equivalent Strain 
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Fig. 12. Error on the computed strain field (gradient deformation model). 

linear model to 1.4% for the gradient deformation model, while the maximum relative 
error is reduced from 32.8% to 2.5%. 

A simulation with a linear shear strain distribution leads to the same conclusions. 
Another interesting example is offered by a more complex strain field. This strain field has 
an embedded highly strained zone which is of particular interest in localization problems. 
The maximum equivalent strain in the midfield is about 0.051. The errors in the prediction 
computed with the linear model are given in Table 1. Again, the errors at the edges and 
corners are obvious. Clearly, the strains at the edges and the corners are much more 
accurate for the gradient deformation model. Even in the midfield, the maximum error is 
reduced from 15.1% to 5.9%. However, the gain in precision is smaller than in the preceding 
simulations. If the local gradient is too strong for the chosen discretization, a second-order 
scheme may be insufficient and the discretization must be refined. 
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Edge particle Corner particle 
Strain group (8) Strain group (8) 

Fig. 13. Enhanced strain groups near edges and corners for noisy displacements. 

4.4. Comparing results computed on corrupted data 
Experimental data are always corrupted by noise. An efficient strain computation 

requires preliminary filtering of the corrupted displacement signals. The present analysis of 
non-correlated white noise, and the filtering procedure to eliminate it, is based on the 
singular value decomposition (SVD). It has been shown by many authors (Deprettere, 
1988; Muijtlens et al., 1990) that the singular value decomposition is an efficient tool to 
accomplish this task. Many valuable properties of the singular value decomposition, includ- 
ing existence proofs, numerical considerations and sensitivity results can be found in Golub 
and Loan (1983). Without noise reduction, high noise levels lead to measurement errors 
which supersede the model errors. Using a good filtering scheme, the random noise on 
input signals; can be reduced significantly, limiting the influence of the experimental errors. 
A proper error analysis requires a statistical prediction of the confidence intervals for the 
measured physical property. Such an analysis was carried out by Peters (1987) for the linear 
model. However, the gradient deformation model is not well suited for a straightforward 
statistical analysis because of the complexity of its mathematical formulation. In many 
cases, the linear approach presents a very significant model error, exceeding any statistical 
prediction towards the expected value of the strains. 

To treat data more efficiently close to edges and comers and to improve statistical 
weighting (in spite of a small decrease in model precision), the strain groups in edges and 
corners, useid in the gradient deformation model, are slightly modified. These enhanced 
strain groups, shown in Fig. 13, use eight neighbouring particles instead of five and six, 
respectively. 

Using similar simulations as presented above, the model error appears to be the most 
relevant contribution in almost all practical cases. The imposed displacement fields have 
been perturbed by a normally distributed random noise signal. The variance of this noise 
signal has been chosen equal to the noise variance that has been observed in associated 
experiments. The linear and gradient deformation model have been used to compute strains 
after the filtering procedures. The results of these simulations are summarized in Table 2 
and Table 3. Table 2 shows the mean relative errors on the computed noisy strain fields, 
while Table 3 lists the maximum relative errors. 

A first simulation concerns a constant homogeneous strain field. When noise-free, such 
a strain field is correctly described by both models with a zero model error. In the presence 
of noise corruption (simulating measurement errors), the linear model gives more accurate 
results than the gradient deformation model (mean and maximum error). This can be 
expected, since it has been stipulated before that the statistical weighting in the higher- 
order model is less efficient than in the linear case. In most cases, the model error for the 
linear model is so important that the addition of noise does not result in substantial 
changes of the computed errors. Relative to the theoretical model precision, the gradient 
deformation model is more sensitive to noise, and requires good filtering, Enlargement of 
the strain groups does not solve this problem, because of the negative effect on the dis- 
cretization error due to the increase of the particle distances. 

All other simulations lead to conclusions which favour the use of the gradient defor- 
mation model. Regular grids with the linear model give mean errors in the midfield which 
equal those by the gradient deformation model. The regular spatial distribution forces a 
model error compensation between the different particles. This artificial error compensation 
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Table 2. Mean relative errors on equivalent strain-computed from a noisy displacement field 

Simulation results : Computed mean errors, relative to the maximum strain 

Simulated 
strain fields 

Particle 
zone 

Midfield 

Regular Edges 
Corners 

Constant case Global 
se&, = 0.094 Midfield 

Irregular 
Edges 
Corners 
Global 

Linear approach Gradient def. approach 

Noise-free (%) Noise (%) Noise-free (%) Noise (%) 

0.0 1.0 0.0 1.0 
0.0 1.2 0.0 1.9 
0.0 1.6 0.0 2.2 
0.0 1.1 0.0 1.3 

0.0 0.9 0.0 1.3 
0.0 1.2 0.0 2.0 
0.0 1.8 0.0 2.4 
0.0 1.0 0.0 1.5 

Midfield 0.0 0.8 0.0 0.8 
Regular Edges 8.9 8.8 0.0 1.6 

Comers 19.6 18.6 0.0 1.4 
Linear case Global 3.3 3.8 0.0 1.1 

se,?_ =0.117 Midfield 3.7 3.8 0.0 1.1 
Irregular Edges 10.7 10.3 0.0 1.6 

Comers 19.1 18.0 0.0 1.4 
Global 6.3 6.2 0.0 1.3 

Midfield 1.2 1.3 1.2 1.3 
Regular Edges 15.3 15.4 1.8 2.1 

Comers 32.7 33.3 2.4 2.9 
Quadratic case Global 6.4 6.5 1.4 1.6 

s@k =0.118 Midfield 3.4 3.5 1.1 1.4 
Irregular Edges 16.6 16.7 1.8 2.3 

Corners 32.3 32.9 2.2 3.4 
Global 8.3 8.4 1.4 1.8 

Midfield 5.1 5.1 2.5 2.4 
Complex field Edges 12.8 12.8 2.0 3.0 
e~‘7?,w~ =0.104 Irregular Corners 21.0 20.2 5.5 8.6 

Global 7.9 7.9 2.5 2.8 

vanishes in irregular grids. In real experiments, regular grids cannot be realized since some 
random irregularity will always be present. It is particularly interesting to notice that 
especially the maximum error is diminished by the higher-order approach. These practical 
examples, computed from noisy data, show that the preceding conclusions made from noise 
free simulations in subsection 4.2 remain valid. In sum, the linear model is recommended 
only if no strain variations are expected. However, the determination of a constant strain 
field can be accomplished easier by other techniques (LVDTs, strain gauges,. . .). 

5. CONCLUDING REMARKS 

A methodology has been proposed to compute strains from discrete sets of displace- 
ments, which have been obtained using experimental techniques like Electronic Speckle 
Pattern Interferometry (ESPI) (see Bergmann et al., 1995 or Galanulis and Ritter, 1993 for 
more details), or using the Hentschel Random Access Tracking System (Zamzow, 1990). 
Two possibilities have been explored, namely an existing method (Peters, 1987) in which 
the variation in the local displacement field is truncated after the linear terms (first-order 
method), and a new approach (second-order method) in which quadratic terms are also 
included in the variation of the local displacement field. A comparison on a number of test 
cases with prescribed, known strain fields clearly shows the superiority of the second-order 
method. The superiority of the higher-order approach diminishes somewhat if corruption 
of the displacement signals is taken into account, especially for slowly varying strain 
distributions. However, for cases with high strain gradients such as typically occur in 
localization problems, the use of the higher-order approach is clearly advantageous. 
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Table 3. Maximum relative errors on equivalent strain-computed from a noisy displacement field 

Simulation results : Computed maximum errors, relative to the maximum strain 

Simulated Particle 
strain fields zone 

Linear approach Gradient def. approach 

Noise-free (%) Noise (%) Noise-free (%) Noise (%) 

Midfield 0.0 3.0 0.0 3.0 
Regular Edges 0.0 4.1 0.0 5.7 

Corners 0.0 3.0 0.0 4.0 
Constant case Global 0.0 4.1 0.0 5.7 

se& = 0.094 Midfield 0.0 3.0 0.0 5.9 

Irregular 
Edges 0.0 3.6 0.0 5.1 
Corners 0.0 2.4 0.0 4.1 
Global 0.0 3.6 0.0 5.9 

Midfield 0.0 2.5 0.0 2.5 
Regular Edges 19.1 21.5 0.0 7.4 

Comers 21.5 22.5 0.0 2.7 
Linear case Global 21.5 22.5 0.0 7.4 

ceg_ = 0.117 Midfield 9.7 10.3 0.0 5.1 
Irregular Edges 24.0 26.1 0.0 7.2 

Comers 23.2 21.3 0.0 2.4 
Global 24.0 26.1 0.0 7.2 

Midfield 

Regular 
Edges 
Comers 

Quadratic case Global 
E%n* = 0.118 

Irregular 
Edges 
Comers 
Global 

Midfield 
Complex field Irregular Edges 

se&, = 10.4 Comers 
Global 

1.2 2.9 1.2 2.9 
29.2 32.3 2.5 7.5 
32.7 34.7 2.5 4.5 
32.1 34.1 2.5 1.5 

11.6 10.6 1.1 4.9 
38.1 39.0 3.9 8.8 
39.1 41.1 3.0 5.0 
39.1 41.1 3.9 8.8 

15.2 15.1 1.3 7.2 
41.6 38.8 6.1 8.1 
41.8 40.2 10.6 13.3 
41.8 40.2 10.6 13.3 

Another advantage is that in the second-order approach all particles can be taken into 
account for the strain computation. Errors at edges and at corners then have approximately 
the same errlot- magnitude as in the midfield, as a consequence, strain distributions around 
internal boundaries such as cracks can be determined much more accurately. 
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