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Abstract Among various correlation techniques to find the displacement field of a
volume imaged by X-Ray tomography at several deformation states, a new approach is
proposed where the displacement is measured down to the voxel scale and determined
from a mechanically regularized system using the equilibrium gap method, and an
additional boundary regularization.

It is shown that even if the underlying material behavior is not very well known,
this approach leads to extremely small correlation residuals. An excellent stability of

the estimated displacement field for noisy (reconstructed) volumes is also observed.
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1 Introduction

X-ray computed microtomography (X-CMT) is a very powerful means for visualizing in
a non-destructive way different (opaque) materials [1-6]. For instance, yielding [7] and
damage mechanisms [8-10], cracks [17,11,12] are observed in situ. Another feature is
to have access to microstructural features [13-16], some of which may directly influence
the observed phenomenon (e.g., fatigue cracking [17]). From the reconstructed volumes,
it is possible to mesh the microstructure [18,19] in order to perform a finite-element
simulation, tailored to the specimen microstructure, so as to describe its mechanical

behavior.

When considering in situ experiments for which scans are obtained at different load-
ing steps, it is possible to evaluate displacement fields with a coarse spatial resolution
by resorting to marker tracking [20-22]. Another technique consists in local correla-
tions [23,24] in which small interrogation volumes in two scans are registered [25].
Global correlation techniques provide an alternative route [26,27]. The latter was used
to analyze the correlation between local density and strain levels [28], and stress in-
tensity profiles in a cracked sample [29-31]. When measurement uncertainties are
compared, the correlation approaches usually outperform the marker tracking tech-

nique [29].

The crucial question common to all correlation techniques is to select the appro-
priate discretization of the sought displacement field. Large interrogation windows (for
local analyses) or coarse meshes (for global approaches) allow for a low uncertainty in
the estimated local mean displacement at the expense of a poor spatial resolution [32—
34]. Conversely, fine meshes (or small interrogation windows) induce a better spatial
resolution, but because of the fewer pixels or voxels considered, displacement uncer-
tainties are larger. Hence, a compromise has to be found. The proper balance between
spatial resolution and displacement uncertainty is a question that has to be addressed
for each analysis since both elements are influenced by the image texture and com-

plexity of the displacement field [35,36]. Three dimensional X-CMT images display



specific features in this connection. Reconstruction artifacts are inevitably present in
the image [37,38] and hence small element sizes can hardly be used.

The present paper aims at breaking the above limitation, and a voxel-wise spatial
resolution is aimed for, which may appear as an unreachable goal. The key to allow
for a kinematic flexibility at the voxel scale (i.e., two neighboring voxels may have
very different displacements) is to introduce a mechanical regularization based on the
hypothesis that the local behavior is, say, elastic for the sake of simplicity. It is proposed
to couple digital volume correlation [26] and a regularization based on the equilibrium
gap method [39]. The interest of the proposed approach is to be able to provide a much
more resolved displacement field with an excellent quality of the registration.

In Section 2, the principle of regularized DVC is introduced. Section 3 deals with
artificial cases generated to test the methodology and its performance. Section 4 is
devoted to the analysis of an in situ tensile test on a spheroidal graphite cast iron

specimen whose tomography is performed on a synchrotron beam-line.

2 Voxel-Based Digital Volume Correlation

In the following, a voxel-based digital volume correlation (V-DVC) technique is pre-
sented. This is made possible by regularizing the (ill-posed) measurement procedure
by a mechanical analysis that is performed in a fully integrated way. Such type of pro-
cedures has been implemented to deal with 2D pictures. The first one was based upon
updating finite element models [40]. The second one [41] resorted to the equilibrium
gap method [42]. The latter will be used in the following. However, none of them was

used to measure displacements at the voxel scale as discussed herein.

2.1 Global Approach to DVC

Local approaches to DVC [23,24] consider sub-volumes that are registered [25] in two

scans. In the present case, a global approach [26,27] is chosen. It allows for a direct



coupling with mechanical simulations that will be used to regularize the correlation

procedure.

2.1.1 Correlation Procedure

The registration of two gray level volumes f and g (f is the reference, and g the
deformed one) is based upon the conservation of the image texture, which for X-CMT

is the X-Ray absorption (whose gray-level encoding gives the reconstructed 3D images)

fx) = g(x+u(x) (1)

where u denotes the unknown displacement field. It consists in finding the best dis-

placement field by minimizing the square of the correlation residual ¢.

Pe(x) = lg(x+ u(x)) — f(x)| (2)

The minimization of ¢§ is a non-linear and ill-posed problem. In particular, if no
additional information is available, it is impossible to determine the displacement for
each voxel independently since there are three unknowns for a given (scalar) gray level.
For these reasons, a weak formulation is preferred. After integration over the whole

Region Of Interest (ROI) (2, the global correlation residual @2 reads

2 1

22 = 5 [ (alx-+ ()~ £0)%ax 3)

in which the displacement field is expressed in a (chosen) basis

u(x) =Y unthn(x) (4)

where 15, are (chosen) vector functions, and u., the associated degrees of freedom. The
measurement problem then consists in minimizing @2 with respect to the unknowns
un. A Newton iterative procedure is followed to circumvent the non-linear aspect of
the minimization problem. Let u® denote the displacement at iteration i, and {u}’ the

vector containing all the unknown degrees of freedom. By assuming small increments



du = ut! — u’ of the solution, a Taylor expansion is used to linearize g(x 4 u(x)) ~

g(x) + u(x) - Vf(x) and then, d62/d{u}’ is recast in a matrix-vector product as

o2 i _ i
5ay = MI'{au} — b} = {0} (5)
with
Miy, = / V() - o (3)V £(%) - thn () dx (6)
2
and
by = / V() b (%) (F() — g(x + 1 (x)))dx (7)
(9]

At this level of generality, many choices can be made to measure displacement fields.
When dealing with volumes, 8-noded elements with classical [26] or enriched [27] kine-
matic bases are used. The former is referred to as C8-DVC, and the latter XC8-DVC.
In the sequel, C8-DVC will be used since no displacement discontinuity is sought.
Consequently, the region of interest is discretized with finite elements for which the
displacement field is interpolated with trilinear shape functions. The equivalent of a
sub-volume in local approaches to DVC is the element for global DVC. The size ¢ of

each element is defined by the length of any of its edge.
2.1.2 Resolution Analysis

To illustrate the ill-posedness of the measurement problem, let us perform the following
resolution analysis [33,43]. A reference volume is considered and the sensitivity of the
measured degrees of freedom u, to noises associated with the image acquisition and
the reconstruction process is investigated. Both reference and deformed volumes are
affected by the same noise. However, the noise-free reference being unknown, this is
equivalent to considering a noise in the difference (g — f) of variance 202. Tt is therefore
assumed that the deformed volume g is polluted by a random white noise 7, of zero
mean, variance 202, and normalized covariance p(v,w), where v and w denote the
indices of the voxels. The [M] matrix is unaffected by this noise, but only the second
member vector {b} is modified by an increment

Sbm = 3 (V- )(v)n(v) (®)

v



whose average is thus equal to 0, and its covariance reads

C(Bbm, Sbn) =207 3" (V f-pm) (V)p(v, W) (V f - 3hn) (W) 9)

The impact of this quantity on the uncertainty of u, is sought. By linearity [see Equa-

tion (5)], the mean value of du; vanishes too, and its covariance becomes

C(0ui, 0u;) = 20" Mt | DS (Vf - 9pm) (V)p(v, W) (V £ - 4pn) (w) | M, (10)

Equation (10) is a general result for any type of noise, kinematic decomposition, and
texture. It shows that the key quantity to evaluate the covariance matrix is the local
sensitivity (V f.pm ), which is localized in all elements whose connectivity involves the
considered degree of freedom wm,.

If the noise can be considered as white, i.e., the normalized covariance in its discrete

definition is equal to dvw, where ¢ is Kronecker’s delta, the previous result becomes
24,1
C(5ui,5uj) =20 Mij (11)

Further, if the correlation length (i.e., the characteristic distance over which the
normalized pair correlation function decays to 0) of the texture is significantly larger
than the voxel size, which is desirable if the noise sensitivity is to be limited, but not
too large, so that the matrix [M] is invertible, the standard displacement uncertainty

oy reads

\/EApO'

NZIDEE (12

Oy —

where (---) denotes the volume average, £ the number of voxels in the considered
finite element, p the physical size of one voxel, A a dimensionless constant dependent
on the interpolation function [43,33].

To illustrate Equation (12), let us consider the volume f to be studied in Section 4.
A Gaussian white noise (v/20 = 1 gray level) is added to the latter and a corrupted
volume g is thus obtained without displacement. A C8-DVC correlation is performed
to register the volumes for different element sizes. The measured displacement is ex-

pected to be identically zero. Figure 1 shows the standard deviation of the measured



displacements. In all the results reported herein, it was checked that the bias (or av-
erage displacement error) was at least one order of magnitude lower than the standard
deviation. Consequently, only the latter is shown. This result is in accordance with
the resolution analysis performed above. As the element size increases, the displace-
ment uncertainty decreases. When extrapolated to small element sizes, the standard
displacement uncertainty reaches levels that make any measurement meaningless and
eventually impossible (i.e., matrix [M] is no longer invertible).

A power law interpolation of the standard displacement uncertainty o, = B/£¢
describes very well the results for which a significant amount of degrees of freedom
does not belong to any edge of the ROI. For the latter, the sensitivity to noise is
higher since part of the information is missing (e.g., one half for faces, three fourth
for edges, and seven eighth for corners). For element sizes less than 32 voxels, a value
a = 1.42 is found, which is in good agreement with the predicted value (1.5) given in

Equation (12).

2.2 Regularized DVC

The previous results show that the smaller the element size ¢, the larger the standard
displacement uncertainty. Consequently, if a voxel-scale determination of the displace-
ment field is sought, additional information is needed to regularize the measurement

problem. This will be achieved by using the equilibrium gap method.

2.2.1 Equilibrium Gap

To enforce mechanical admissibility in an FE sense, the equilibrium gap is first intro-

duced. If linear elasticity applies, the equilibrium equations read

[K]{u} = {f} (13)

where [K] is the stiffness matrix, and {f} the vector of nodal forces. When the dis-

placement {u} is prescribed and if the (unknown) stiffness matrix is not the true one,



load residuals {f;-} will arise

{fr} = [Kl{u} — {f} (14)

In the absence of body forces, interior nodes are free from any external load. Conse-
quently, the minimization of the equilibrium gap consists in minimizing the following
quantity

9%, = S {0} (K] (K] {u) (15)

where ? is the transposition operator, and 202, corresponds to the sum of the squared
norm of all equilibrium gaps at each interior node. It is worth noting that the unknowns
are related to the components of the stiffness matrix. As such, the determination of stiff-
ness fields requires a discretization that is coarser than that of the kinematic mesh [44].
However, if the local stiffness can be related to the gray level, then the problem can
be regularized, as was shown when identifying a damage law [39]. The same type of
procedure will be followed in the sequel, pushing the procedure down to its ultimate

limit, namely, the voxel size.

2.2.2 Regularized Correlation Procedure

To solve the coupled minimization of correlation residuals (45%) and equilibrium gap

(#2,), a weighted sum of both residuals is defined as
o} = (1 B)dp, + P2 (16)

where 3 is a dimensionless parameter in the interval [0, 1], 5%1 the normalized equilib-
rium gap, and @2 the normalized correlation residual.

To normalize both residuals, let us consider a unitary displacement field

u

up = 57—
[[ull

(17)
With the previous definition, both residuals read

= @ (w) = 5 (w} K] K] )

72 = @2 w) = 2w} M{u} (18)



The latter values are thus used to make their corresponding residuals dimensionless
and comparable. It is worth noting that any displacement field u; may be used in the
present normalization technique. In the following, a simple “plane wave” displacement
is chosen in the z direction with a 16-pixel wavelength (short enough to fit in small
volumes, large enough to avoid discretization artifacts), meaning that with 8 = %, the

“cut-off wavelength” is equal to 16 pixels. The normalized residuals then read

Dy, = qj—m and P, = % (19)
Pm Pe

When the material parameters are known, the minimization of @? with respect to the
unknown degrees of freedom can be performed [41]. It corresponds to an integrated way
of measuring displacement fields since the displacement field will satisfy equilibrium

equations in addition to the texture conservation.
2.2.8 Regularization of the boundary conditions

The above introduced equilibrium gap functional exploits the residual body forces at
interior nodes, which are to be as small as possible. However, along the boundary of
the ROI neither static nor kinematic information is available. Any displacement field
prescribed on the boundary gives rise to one displacement field for which &,, = 0.
Hence, without boundary conditions, the mechanical regularization vanishes on the
former. Similarly, close to the edges, the DVC algorithm gives rise to a higher level
of uncertainty than in the bulk, because of the fewer number of neighboring elements.
Hence, although regularization is achieved in the bulk, boundaries remain a weak point
in the analysis, and as smaller and smaller element sizes down to the elementary voxel
are sought, ill-posedness of the problem remains. This observation calls for a third
regularization for boundary nodes.

Since no mechanical information is available, it is proposed to introduce a penal-
ization of short wavelength displacement fluctuations along the faces of the region of
interest. The third objective function to be considered should however vanish for any

rigid body motion. It is therefore proposed to introduce

@ = 2 (' [L)'[L]{u} (20)
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where L is a discretized Laplacian operator acting on the faces of the ROI. For any
translation and rotation, the above functional vanishes. Let us note that in two dimen-
sions, where the same procedure can be applied, the boundary regularization takes the
form of the quadratic norm of the second derivative of the displacement field along
the edges. In the special case where the boundary of the ROI meets a free surface, a
complete static information (zero tractions: &.n = 0) is available and should be used
instead of the above form.

As for the above cases, the boundary objective function is normalized based on a
similar reference displacement field

By=2 (21)
@b
where 3% = @7 (uy) = (1/2){ur}[L]Y[L]{u;}. Finally, the total objective function to
be minimized reads

7 = (1 - — )i, + Sz + 1D} (22)

where >0,y >0and S+7 < 1.
2.2.4 Justification of the reqularization

To understand that the above combination of the correlation and mechanical resid-
uals will allow for a regularization, it is necessary to resort to a spectral analysis of
both functionals. Let us consider a displacement field in the form of a plane wave
du(x) = dug exp(ik.x) with a vanishing amplitude |dug| as a perturbation of a refer-
ence displacement field, ueq ideally assumed to minimize both functionals. The corre-

lation residual amounts to
1
@2 (1eq + du) = (ueq) + 5 {du} [M]{du} (23)

On average, the residual perturbation d®? scales as |dug|?([M])|£2| The important
feature to note is that this term is independent of the wavevector k.
The mechanical residual perturbation is also a quadratic form in dug. However, it

scales as the fourth power of the wavenumber

o7, oc [k|*[dug ?|62] (24)
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A similar spectral analysis performed on the boundary term shows that the scaling of

@y, for a plane wave displacement field is similar to that of the mechanical regularization
oy o [k||duo[*|02| (25)

where 9f2 is the outer boundary of the considered ROI. Hence, &, and &, are natural
complements.
Balancing the expressions of @, and &, or &, shows that there are two character-

istic length scales, £ and &, such that

€ x ﬂ% and & o @ % (26)

where &, gives the depth of the boundary layer that is affected by the boundary regu-
larization. Concerning the bulk, below the & length scale, ®;, dominates over &, and
hence the small scale displacement is mechanically admissible, whereas at large length
scales the correlation residual is dominant. These two length scales play the same role
in terms of regularization as the mesh size in the C8-DVC formulation. However, rather
than choosing finite element shape functions, which are convenient but not mechani-
cally significant, the introduced formulation implements, in addition to a conventional
boundary regularization, a physically motivated short scale regularization where the
information is available (i.e., in the bulk). Adjusting the value of the parameters 3

and v is a way of tuning the regularization scales.

3 Artificial Cases

Two artificial cases are studied, namely, the first one whose texture has a low frequency
content. The second one is directly related to the practical case that will be studied in

Section 4.

3.1 First case

The deformation of an artificial isotropic material with slowly varying Young’s modulus

FE is first analyzed. As shown in Figure 2, Dirichlet boundary conditions are prescribed
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to solve a regular 3D finite element problem, which allows then to generate a deformed
image. In the present case uniform displacements corresponding to an average uniaxial
strain of 1% are prescribed on two opposite faces, and the other external boundaries
are traction-free. This synthetic case is considered in order to validate the method. The

dimensionless correlation residual, 7, is defined as

1 1 5
7 mxf_mnf\/ 7 2 (x4 u) = 900) (27)

Figure 3 shows the change of the dimensionless correlation residual for two different
DVC techniques as a function of a regularization length scale. The first curve is a
reference solution where a global C8-DVC is chosen. In that case, the regularization
length scale ¢ is taken as the element size ¢. The increase of the residual is due to a
systematic error caused by the fact that coarser and coarser elements cannot capture
accurately the actual displacement field. It is to be stressed that for ¢ < 4 voxels the
C8-DVC algorithm becomes unstable (see Figure 1). The second curve corresponds to
the present mechanical regularization using homogeneous elastic properties. In that
case, &, is set to 16 voxels. The correlation residual typically is cut down by a factor
of 4. Moreover, ¢ can be reduced to values as small as 2 voxels with no convergence
problems.

The robustness of the proposed method is better than that achieved with a standard
C8-DVC procedure. It is worth noting that the correlation residual is lower even if the

material properties are not the actual ones.

3.2 Second case

The texture that is used in this example (Figure 4) was obtained from a X-Ray tomog-
raphy (for a more detailed description, see Section 4). The goal of this example is to
study a case that is more realistic in terms of texture.

The effect of noise is shown in Figure 5 with the proposed (V-DVC) approach
and with C8-DVC. The same procedure as in Section 2 is followed. The standard

displacement uncertainty is lowered by one order of magnitude when comparing C8-
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DVC and V-DVC. This result shows that the proposed regularization is very effective,
even for low cut-off lengths. Since the V-DVC approach also leads to smaller correlation
residuals, it means that V-DVC is not a tradeoff between stability and accuracy. In the
present case, a small ROI (i.e., 233 voxels) was considered since voxel-scale calculations
are performed. Consequently, edge effects dominate and the power —3/2 expected
from Equation (12) is not found. Rather, a power —1 is observed suggesting that face

boundaries are the main source of uncertainty.

The deformation of the considered texture is now analyzed. As previously, the local
Young’s modulus E is assumed to be a deterministic function of the gray level (an affine
variation is chosen with a maximum contrast of 3 over the gray levels spanned by the
reference volume, namely, the maximum value is equal to three times the minimum
value of E). An elastic computation is first performed when a 1%-extension along the
z-direction is prescribed as in the previous case. The lateral faces are stress-free, and
the displacement field is used to create an artificial deformed volume. The change of
the dimensionless correlation residual as a function of the regularization length scale
is shown in Figure 6 for the two different DVC techniques. All the trends observed
in the previous case are also found for the present texture. In particular, a significant
reduction of correlation residuals is achieved with the regularization, especially for
small regularization lengths. A factor 4 gain is again observed. As in the previous
case, a saturation of the correlation residuals occurs for small regularization lengths, &,
signaling that the results become independent of that parameter. The main difference
is related to the absolute levels themselves that are higher in the present case. This
is due to the more rapidly varying displacement field induced by the more complex

texture.

Further, it is shown that as the cut-off wavelength &, decreases, the correlation
residuals decrease as well. This result allows to regularize the measurement problem
with very small wavelengths for the boundary conditions. The fact that a plateau
region when £ < 4 voxels is observed for any tested values of &, allows for a choice of &

independent of the value chosen for &,. Due to exogenous nature of the regularization
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used for the boundary conditions, &, has a slightly different role, namely, in the generic
case (when the displacement close to the boundaries has to be considered) it should
be as low as possible, but high enough to maintain the global convergence properties.

From the study of these two artificial cases, it appears that the proposed regu-
larization fulfills the expected objective. It allows for a rapid convergence towards a
displacement field that has a much lower residual level than what could be achieved
traditionally. Moreover, it has been shown that for low & values, the residuals ap-
peared to become independent of £. This means that the regularization is neutral and
only provides a way of interpolating the displacement at small scales when another
(correlation-based) information is missing, thus preserving the well-posedness of the

problem, without compromise to the image registration algorithm.

4 Practical Case

The material studied herein is a ferritic cast iron whose composition is 3.4 wt.% C, 2.6
wt.% Si, 0.05 wt.% Mg, 0.19 wt.% Mn, 0.005 wt.% S and 0.01 wt.% P. After casting
and heat treatment (ferritization at 880 °C, followed by air cooling) the microstruc-
ture obtained is a ferritic matrix (98 wt.% ferrite and 2 wt.% perlite, average grain
size 50 pm) with a 14% volume fraction of graphite nodules. Carbon (nodules) and
iron (matrix) have atomic numbers that are different enough to give a strong X-ray
attenuation contrast. Therefore, the spherical nodules, which are homogeneously dis-
tributed inside the matrix, are easily imaged by tomography and they can be used as
natural markers for image correlation in the reconstructed 3-D images. The average
nodule diameter of 45 pum is large enough to allow for a relatively low resolution voxel
size to be used for tomography. This also enables one to observe millimetric samples,
the only limitation for the sample size being the overall attenuation of the material
that has to allow for, at least, 10% transmission of the incoming X-Ray beam.

The experiment was performed at the European Synchrotron Radiation Facility
(ESRF) in Grenoble (France) on Beamline ID19. The synchrotron beam is parallel

so that the voxel size only depends on the optics used. To obtain a 3D image of
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the specimen, six hundred radiographs (referred to as a scan) were recorded while
the sample was rotating over 180° along a vertical axis. A Fast Readout Low Noise
(FReLoN) 14-bit CCD camera with a resolution of 2048 x 2048 pixels was used [45].
The time required to acquire each image was set to 3 s, resulting in a total scan time

of about 42 minutes.

A specially designed in situ fatigue testing machine that allows for loading and
cycling (up to a frequency of 50 Hz) of the specimen [46] was used. The specimen was
loaded to a maximum level of 273 N, and then unloaded. Five tomographic scans were
acquired during which the load level was equal to 22, 150, 200, 250 and 273 N, and
one scan upon unloading (load level: 21 N). In the following, only the scan correspond-
ing to the maximum load level will be considered in addition to the reference scan.
Reconstruction of the tomographic data was performed with a conventional filtered
back-projection algorithm [47]. It provides a reconstructed volume with a 32-bit dy-
namic range that is proportional to the local attenuation coefficient. The 32-bit volume
is subsequently re-encoded onto an 8-bit range to reduce data size and computation
time. This truncation does not degrade significantly the raw data since reconstruction
artifacts are of higher amplitude than the error induced by the former [37,38]. The
region of interest has dimensions of 200 x 340 x 512 voxels, i.e., with a voxel size of

5.06 pm in the reconstructed images, 1.01 x 1.72 x 2.59 mm?.

Numerical tests are analyzed on a ROI in the center of the volume of size 23 x
23 x 23 supervoxels (i.e., 13,824 x 3 degrees of freedom for a V-DVC approach) after
a pyramidal filter is applied (i.e., a recursive construction that consists in averaging
groups of 2x2x2 voxels to form a “super-voxel”). The lengths &, and £ are initially set
to 16 supervoxels. In the present case, the physical size of each considered (super)voxel
(or element since V-DVC is used) is equal to 10.12 um. This coarsening was necessary
since the nodule spacing was too big to get a sufficiently rich texture. A first step was
applied to correct for rigid body translations (up to a level of 19.5 supervoxels along

the loading direction). Then the V-DVC procedure itself is run. The convergence in
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terms of displacement corrections is shown in figure 7; a rather fast rate is observed.

The total CPU time is equal to 15 min on a Core i7 (2.9 GHz) computer.

The next check is given by the correlation residual that measures the registration
quality. Figure 8 shows that there is a change only for the first three iterations. After-
wards, for &, and € both equal to 16 voxels, a saturation is observed at a level of 1.6 %
of the dynamic range. This value is significantly lower than previously observed with
C8-DVC [26,28] and reaches values commonly observed in Q4-DIC [33]. The fact that
the dimensionless residuals tend to such low values is an additional indication that
the results are trustworthy. This value can be further decreased down to 1 % when &,
and & are set to 6 voxels. In comparison, the correlation residual that was obtained
with the C8-DVC approach on the same ROI is equal to 3 % when 9 elements are
used, meaning that while improving the robustness, V-DVC allows for decrease of the

correlation residual by a factor of 3. This result further validates the V-DVC approach.

The correlation residual map is shown in Figure 9 when &, and £ are set to 6 voxels.
The maximum value is equal to 12 gray levels for a dynamic range of the scans of 256
gray levels. Except at very few locations, the residual levels are very low everywhere.
This may indicate deviations from the assumed behavior or a small texture gradient
that does not allow for a good (local) registration. The scan g corresponding to the
deformed state is given in the same figure for comparison purposes. The location of the

nodules generally disappears in the correlation residual map.

Figure 10 shows the deformed volume at convergence of the V-DVC procedure.
A smooth displacement field is observed on the external surface. This result is made
possible by the use of the wavelength &;,. The displacement field is also regular inside the
volume as can be seen on the cut shown in Figure 10 for the displacement component
along the tensile direction. It is worth emphasizing that the overall amplitude of the
displacement field over the analyzed volume is equal to 1 voxel, or 10 um. To see
more clearly the impact of boundary and bulk regularization, Figure 10 also shows
the component of the displacement along the tensile direction in the mid section of

the volume. The corresponding texture as well as the correlation residual field of the
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same section are shown for comparison purposes in Figure 9. It is worth remembering
that the displacement fluctuations are due to the heterogeneous nature of the studied

material at the voxel scale.

5 Conclusion

A new regularized Digital Volume Correlation method was introduced herein. It allows
for the measurement of displacements at a voxel level, exploiting the assumption of
an elastic behavior at a small scale, and a boundary regularization. When such a
regularization is not used, even global DVC is not reliable for small element sizes, and
eventually does not converge for very small element sizes since the problem becomes
ill-posed. The regularization is performed using the Equilibrium Gap Method.

The correlation residuals are extremely small (much smaller than using a global
DVC algorithm for any element size) showing the ability of the method to provide a
faithful (and mechanically admissible) displacement field. To further lower the residu-
als, the measurement technique contains an “on the fly” identification procedure, which
was not used herein. It consists in considering the elastic parameters as unknowns to
be determined as was proposed for 2D applications [40]. A first step will consist in
evaluating the sensitivity of the measurement technique to the sought mechanical pa-

rameters.
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Fig. 1 Standard displacement uncertainty as a function of the element size £ in C8-DVC. The
interpolation (solid line) is described by a power law B/£%  where o = 1.42 is good agreement

with Equation (12).
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Fig. 2 Deformed state of the artificial material used to generate a slowly varying texture. The

gray level is a growing affine function of the local Young’s modulus that varies from 1 to 100.

The frame depicts the edges of the undeformed volume.
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Fig. 3 Dimensionless correlation residual, n, with two DVC methods as a function of finite
element sizes, ¢, for C8-DVC, and of cut-off wavelengths, &, for the proposed V-DVC method.

The C8-DVC curve was stopped at the left because of lack of convergence.
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Fig. 4 Deformed state of material used for the second test case. The gray level is a growing

affine function of the local Young’s modulus that ranges from 1 to 3. The frame depicts the

edges of the undeformed volume.
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Fig. 6 Dimensionless correlation residual, n, with two DVC methods as a function of finite
element sizes for C8-DVC, and cut-off wavelengths for the proposed V-DVC method. The

C8-DVC curve was stopped at the left because of lack of convergence.
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Fig. 7 Convergence of the present method in terms of RMS of the displacement increment
between two iterations, as a function of the number of iterations for the chosen ferritic cast

iron tomographies (load levels: 22 and 273 N).
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Fig. 8 Dimensionless correlation residuals as a function of the number of iterations for the

chosen ferritic cast iron tomographies (load levels: 22 and 273 N).
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Fig. 9 Correlation residual map (left) and deformed scan (right) when &, and ¢ are set to
6 voxels. Note that the dynamic range of the residual map is significantly lower than that of

the deformed scan (256 gray levels). The frame depicts the edges of the undeformed volume.
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Fig. 10 Deformed volume with displacement amplitude (left) and along the tensile direction
(right) expressed in voxels when &, and £ are set to 6 voxels. The frame depicts the edges of

the undeformed volume.



