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COMPUTING STRAIN FIELDS FROM DISCRETE
DISPLACEMENT FIELDS IN 2D-SOLIDS

M. G. D. GEERS,{ R. DE BORST} and W. A. M. BREKELMANS
Faculty of Mechanical Engineering, Eindhoven University of Technology, Eindhoven,
The Netherlands

(Received 18 July 1995 ; in revised form 3 October 1995)

Abstract—The analysis of strain localization and damage evolution in materials requires appropriate
experimental techniques to verify the complex material behaviour in the damaging zone. Modern
techniques are now available to measure the displacement fields in small zones of a material, and a
complementary procedure is needed to derive the accompanying strain fields. The knowledge of the
local strain fields gives direct information with respect to the applied constitutive model and serves
as initial input for most parameter estimation procedures, while the fine-tuning of the model
parameters should be done by comparing the computed and measured displacement fields. This
study presents a theory to compute strains from the displacements in a discrete set of points and is
particularly useful in the post-processing of experimentally measured displacement fields. The theory
is fully elaborated, and some practical examples are given. A comparison is made with some
analytical solutions, and the effect of noise on the input data is evaluated. Copyright © 1996 Elsevier
Science Ltd.

1. INTRODUCTION

In recent years, it has been recognized that the mathematically consistent description of
failure and the accompanying localization phenomenon requires higher-order continuum
models or the addition of viscosity in the constitutive description (for an overview see, for
instance, de Borst et al., 1993). If such an enhancement is not made, ill-posed boundary
value problems result, which cannot properly represent the physical failure process. The
quoted remedy, namely the introduction of higher-order continuum descriptions, invariably
introduce one or more additional material parameters, the number depending on the type
of enhancement (non-local, gradient or micro-polar continua) or the specific constitutive
setting (e.g., damage or plasticity). In any case a material parameter is introduced that has
the dimension of length, and which is related to the dimensions of the localization zone.

A problem now resides in the determination of this characteristic length, since it cannot
be measured via simple tests, in which one tries to achieve uniformity of the specimen.
Evidently, homogenous deformations do not trigger strain gradients, and the higher-order
deformation terms then vanish, and so does the influence of the characteristic length
parameter. Accordingly, the proper determination of the characteristic length parameter
can only be carried out for non-uniform tests, whereby the size and the strain distribution
in the localization zone are determined accurately by local measurements, and subsequently
compared with the results of numerical simulations using a specific enhanced damage or
plasticity model.

Experimental techniques that can measure locally are often based on optical methods,
e.g. the Electronic Speckle Pattern Interferometry ESPI (Bergmann et al., 1995 ; Galanulis
and Ritter, 1993), or the Hentschel Random Access Tracking System (Zamzow, 1990).
Alternatively, length transducers or magnetic resonance imaging can be used, e.g. the
measurement of strain fields in the walls of the heart (Hunter and Zerhouni, 1989). These
methods provide information of the displacements at discrete points on the surface of the
body, and are therefore well-suited for relatively thin structures. However, in continuum
mechanics-based theories such as continuum damage mechanics (CDM) knowledge of the
strains is often required, e.g., for the determination of threshold levels of damage.
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1 Also at Faculty of Civil Engineering, Delft University of Technology, Delft, The Netherlands.
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For the determination of strains on basis of these experimentally acquired displacement
data (Peters, 1987) has presented a method in which the local differences in the dis-
placements have been expanded in a Taylor series, which was truncated after the first, linear
term. While giving good results for slowly varying strain fields, this method is insufficient
in the presence of steep strain gradients, or near edges, either external, or internal (cracks).
For the accurate determination of strains on the basis of discrete displacements an improved
method is called for, which is the subject of this contribution. After outlining the notation
used in this study, the improved method will be derived in detail. Next, an accuracy
assessment will be given of the method presented by Peters (1987) and the approach
developed here. Attention will also be given to the possible effect which corrupted data
may have on the accuracy.

2. NOTATIONS AND CONVENTIONS

Throughout the theoretical elaborations the following notations will be used, with
their definition in a Cartesian coordinate system between parentheses :

Scalar =q

Vector =a (=a)
Second-order tensor = A (=4,
Third-order tensor =3A (= Ay)
Fourth-order tensor =4A (= Ay
Dyadic product = AB (= A;Bu)
Inner product =A'B (= A4,B;)
Double inner product =A:B (= A4,By)
Triple inner product =3AB (= AyuBy)
Quadruple inner product =‘A: ‘B (= A;Buy)
Inversion =A"!

Conjugation = Af (Af = Api)
Estimate of a tensor =A

Finite difference =A

The theoretical elaborations in the next section are entirely based on a 2D-continuum,
deformed in its plane. The behaviour of the material is characterised by the displacements
of a discrete set of points at the surface of the material. The material coordinates, rep-
resenting the initial configuration at time ¢ = 0 of the representative particles of the
continuum, are designated with upper-case letters or X in vector notation. The spatial
coordinates, representing the configuration at time ¢, are designated with lower-case letters
or X, in vector notation. The coordinate systems for material and spatial coordinates are
considered to be superimposed with rectangular Cartesian coordinate axes. At time ¢ = 0,
X may then be written as

X =x,. (1

Using this coordinate systems all material coordinates will now be denoted by their spatial
coordinates at time ¢t = 0, x,,.

3. FORMULATION OF THE METHOD

3.1. Gradient deformation formulation
Consider two neighbouring particles, which occupy the points P, and Q, in the plane
2D-continuum at time ¢ = 0. The position vector of P, is identified by x, while the position
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Initial configuration » Deformed configuration
time t=0 time ¢

0

Fig. 1. Infinitesimal deformation in the 2D-plane.

vector of O, can be written as x,+ dx,. At time ¢, after deformation, the two particles move
to the points P, and Q, identified by x, for P, and x,+dx, for Q, (Fig. 1).
The deformation tensor in P, at time 7 is now defined as:

dx, = F-dx, @
which results in
0x,
F =(Vox,) = %,

At a fixed time ¢ the actual position vector x, of a point P, can be considered as a function
of the initial position vector x,. The position vector of a neighbouring point x,+ Ax, can be
written as a vectorial Taylor-series expansion, truncated after the second-order terms:

0x 0*x
AX, = —+AXy + —— 1 AXoAX, +2 3
axo 0 axg 0 0 ( )

where a represents the theoretical discretization (or truncation) error. Equation (3) involves
the deformation tensor F = 0x/0X (eqn (2)) and the gradient deformation tensor 9°x/8X>
of rank three. The tensor G is defined as:

g1 0%
X2
Using this definition eqn (3) can be rewritten :
Ax, = F-Ax, +3G: AxoAx, +a. @

Consider the central particle at the point P, surrounded by k neighbouring particles at
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Fig. 2. Particle distribution around the central point.

the points Q, (Fig. 2). Equation (4) can now be formulated for each point Q, involving a
discretization error a, for each equation. These errors a; can be decomposed in a constant
average error (for the group of particles in consideration) a and a variable error Ja,
determined by the exact position Q, of each particle. It is assumed that this variable error
is random and follows a normal distribution (the error is tied to the scattered positions of
the particles around their mean positions). At least six particles at Q, are required to solve
the unknowns in the eqn 4 and thus to determine an estimation for F in P,. If more
than six particles are available a statistical approach is needed, which will yield a better
approximation for F.

Assuming that all particle positions have been measured experimentally, an additional
measurement error must be taken into account. The left-hand side of eqn (4) can be
rewritten for each pair (P, Q,) and results in k equations with a right-hand side which
equals d; (ie[l,2,...,k]):

d; = Ax,—F-Ax, —3G:AxgAx, —a  (i€[l,2,...,k]). (5)

The vectors d, represent the sum of the stochastic deviation caused by inherent measurement
errors and the random part da; of the discretization error. The measurement errors are also
assumed to be normally distributed around a constant systematic error. This constant
systematic error can be added to a, which then represents the sum of the mean discretization
error and the constant systematic measurement error. The remaining deviations d, are
assumed to be not correlated and normally distributed around the null vector.

The probability density function for the k observed deviations d; in a 2D-plane as
defined by eqn (5) equals:

L3

1
Pld, (iel...k);a;F] =(2no) *e ma%® (6)

with d; having non-correlated Cartesian components in the x- and y-directions, or
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0’ =g =g
Using the maximum likelihood method, the estimates for F, a and *G can be retrieved by
maximizing the probability density function with respect to the unknown variables (F,a

and *G). Maximizing eqn (6) involves minimizing the scalar function J:

(N

J=7Y d4q,

i=1

or using eqn (5):

J=s,—2F:W—2G : *H—2m, a+(FF): X
+2CG°F) : *Y+(’G°-3G) :*Z+2°G : Xa+2F :mya+ka-a

with :

k
S = Z AX,['AX,‘,
i=1
k .
m, = ) Ax,
i=1

k
m, = _Z] Ain

!

R

1
—_

X = ) Ax,Ax,,

k
W= ) Ax,Ax,
i=1

k
H=) Ax,Ax,AX,
i=1

i

k
3Y = Z AinAXOiAxO'_
i=1

i

k
4'Z = Z AinAXOiAXOiAx(),-'
i=1

Differentiating J with respect to the unknowns F, a and *G, and setting the result equal
to zero minimizes J which leads to a system of equations for the maximum likelihood
estimates F for F, °G for °G and 4 for a:

oJ

£=0=—W+X'F‘”+3Y:3C‘+moﬁ=0 ®)
aJ 3 3 7 4 36 a 3
——=0= H+Y - F+4Z:’G°+Xa =10 ©)
G

oJ R \ A .

g = 0= —m+Fm+°G:X+ki = 0. (10)

By eliminating & from the eqns (8)—(10) the system can be simplified to:
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AP 4IBE = C an
B fe+4D G = °E (12)
with :
A =kX—mym,
B=kY-—myX*
C = kW-—-m,m,
‘D =Kk*Z—-XX"
E = K°H—Xm,.

The solution of the system of eqns (11)+(12) finally results in:

F=N-M—° (13)
where
M=A-—"B:*D"':°B
N=C-°B:“D':’E.
Strains can now easily be computed by selecting an adequate strain tensor. In this

analysis, the Green—Lagrange strain tensor will be used throughout all computations. The
estimate for this tensor is given by:

§=3(F-F-I). (14)

A regular solution of eqn (13) requires regular tensors M and “D. This condition is
satisfied if at least six independent particles, delivering 12 displacement components, are
used. These 12 components are required to solve the equations for the unknown six
components of *G, the four components of F and the two components of a. If a is excluded
from the analysis, only five independent particles are needed for a regular solution.

3.2. Retrieval of the linear model

The equations for the linear model (Peters, 1987) can be easily retrieved by removing
3G from the eqn (7). The third-order tensors *H, *Y as well as the fourth-order tensor “Z
then vanish. Equation (9) is no longer relevant, and only the substitution of eqn (10) into
eqn (8) is conserved (eqn (11)). Removing G from eqn (11) directly leads to the linear
solution :

AF=C
or
(kX —mgmg) - F¢ = kW —mom,
(kzi:AxoiAxoi—momo) Fe= k;AxoiAx,i—mom,. (15)

4. ACCURACY ASSESSMENT OF THE GRADIENT DEFORMATION MODEL

4.1. Numerical simulations
For an accuracy assessment of the two approaches, a method is required which focuses
on the inherent deterministic model error.
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The tests used for the comparison, have been chosen such that a 2D-spatial particle
distribution has been utilized that approximately matches the 2D-marker distribution of
existing experiments based on the Hentschel Random Access Tracking system (Zamzow,
1990). With aid of these quantitative assessments a global, qualitative picture can be
obtained of the model error for general strain distributions. All simulations have been
performed on an almost square subarea of 11 by 11 points. The entire zone of 121 points
covers an area of 3 by 3 cm. The distance between points is thus approximately 3 mm.

In some simulations, the stochastic variation of the distance between the particles
(observed in experiments) is also taken into account by scattering the particles around their
mean position with a normal distribution. It will be shown that this has a considerable
influence on the final results.

The error analysis that is the subject of subsection 4.3, only concerns the model error
and not the measurement error which is the subject of a statistical approach.

4.2. Analytical test fields
To analyze the performance of both methods five displacement fields with their
accompanying strain fields have been adopted :

(i) A constant homogeneous strain field
(ii) A quasi-linear g,, strain field
(iii) A quasi-quadratic g,, strain field
(iv) A linear shear strain field
(v) A higher-order complex strain.

The first three fields have been simulated on two different particle distributions :

—A regular distribution with a distance between points of 3 mm. This distribution consists
of a perfectly square 11 x 11 particle field covering the test area of 3 x 3 cm. The x- and
y-distances between the particles are fixed and equal to 3 mm.

—An irregular distribution with a mean distance between particles of 3 mm. This dis-
tribution simulates the stochastic deviations of the distances between the particles. The
x- and y-distances are normally distributed around a mean value of 3 mm.

The shear strain field and the complex strain field have been tested only on irregular
distributions.

4.3. Evaluation of the strain models

To compute the approximated strain field from a discrete displacement field, strain
groups have to be defined. A strain group is the set of material particles, which surround
the central particle in which the strains are to be computed, and is used in the theoretical
model to carry out the strain estimation. More particles in a strain group will give better
results. Yet, if the distances between the central particle (or marker) and the surrounding
particles become large, the remaining discretization error rises significantly and will
adversely influence the computational results. In a square particle pattern, three types of
particles can be distinguished. The particles in the midfield have neighbouring particles in
all directions. The edge markers have neighbours on one side, while the corner markers
limit neighbours to a quadrant. The strain groups used in this simulation have eight
surrounding particles in the midfield, six at the edges, and five in the corners as illustrated
in Fig. 3.

The spatial composition of a strain group influences the quantitative results, but has
no real impact on the qualitative interpretation and the comparison between the two models.
The specific selection of strain groups used in these simulations is made by comparison of
several combinations of strain groups. The current selection mainly involves the particles
in the immediate neighbourhood. This selection gives best results in noise-free compu-
tations. Some small modifications are recommended, when dealing with noisy data which
will be discussed in subsection 4.4.

The simulation of a constant homogeneous strain field is a straightforward test. In this
case, both models should reproduce exactly the imposed analytical strain field. It is used to
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[ S —
Midfield particle Edge particle Cormner particle
Strain group (8) Strain group (6) Strain group (5)

Fig. 3. Defined strain groups in simulations.

Eyy-strain component

25

Y-direction [mm} 15 X-direction [mm)

Fig. 4. Analytical exact strain field.

Eyy-strain component

‘ 30
Y-direction {[mm] X-direction [mm]
Fig. 5. Computed strain field—linear method.

check possible implementation faults. Both models satisfied this test perfectly. Figures 46
illustrate the poor quality of a linear approach in irregular meshes and particularly close to
the edges and corners for a quasi-linear strain field. The same conclusion can be drawn
from Table 1, which represents the errors relative to the maximum equivalent strain in
the entire field. However, the regular distribution gives quasi-zero errors in the midfield.
Discretization errors compensate each other, through their regular spatial distribution in a



Computing strain fields from discrete displacement fields in 2D-solids 4301

Eyy-strgln component
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Fig. 6. Theoretical absolute error—linear method.

Table 1. Relative errors on equivalent strain—distance between particles of 3 mm

Simulation results : Computed errors, relative to the maximum strain

Linear approach Gradient def. approach
Simulated Particle

strain fields zone Mean (%) Max (%) Mean (%) Max (%)
Midfield 0.0 0.0 0.0 0.0
Regul Edges 8.9 19.1 0.0 0.0
egular Corners 19.6 21.5 0.0 0.0
Linear case Global 33 21.5 0.0 0.0
Beqpo =0-117 Midfield 3.6 10.1 0.0 0.0
Irregular Edges 10.0 26.8 0.0 0.0
g Corners 18.1 226 0.0 0.0
Global 6.0 26.8 0.0 0.0
Midfield 1.1 1.2 1.1 1.2
Regul Edges 15.3 294 1.8 2.5
eguiar Corners 32.8 32.8 2.5 2.5
Quadratic case Global 6.4 32.8 1.4 2.5
eq,, = 0233 Midfield 23 13.4 1.1 1.5
I 1 Edges 16.1 44.0 1.8 49
freguiar Corners 333 434 1.8 3.8
Global 7.4 44.0 1.3 49
Midfield 1.6 4.1 0.0 0.0
Linear shear Irregul Edges 4.7 12.0 0.0 0.0
£eq,, =0.164 guiar Corners 10.7 14.1 0.0 0.0
Global 2.8 14.1 0.0 0.0
Midfield 35 15.1 2.5 59
Complex ficld I 1 Edges 11.2 44 1.6 4.5
€, =005 CTTEBWAI Corners 15.3 26.3 1.4 2.4
Global 6.1 40.4 2.2 5.9

linear field as depicted in Fig. 3. The enhanced higher-order approach perfectly simulates
this linear strain field for all spatial particle distributions. Table 1 clearly shows the zero
error that is obtained in the midfield, in the edges as well as in the corners. This result could
be expected since the order of the chosen discretization scheme corresponds to the order of
the displacement field.
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Equivalent strain

025
02"
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Fig. 7. Analytical exact quadratic strain field.

03r TR e fe

45 40 35 3Q 25 20 15
Y—direction [mm}

Fig. 8. Side view of the analytical exact strain field for quadratic strain distribution.

Figure 7 shows the exact equivalent strain ¢, (equal to ¢,,) of a quadratic strain, where
the equivalent strain is defined as:

2 2 2
&y =/ Eux 16, +285,.

When the quadratic 3D-shape is projected on a 2D-plane with normal along the X-axis,
the parabolic curve of Fig. 8 is obtained.

Both approaches will now be tested with this quadratic strain field. The linear model
produces a strain field, which is shown in Fig. 9. The numerically simulated field is super-
imposed on the analytical solution, so as to enhance the contrast. The model error becomes
large close to the boundaries of the particle mesh. Even in the midfield, computed strains
deviate significantly from their correct values. These examples show, once more, that the
linear model is sensitive to the spatial particle distribution, and cannot produce reliable
results close to the edges nor in the midfield of inhomogeneous strain fields. The error on
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Equivalent strain

0 45 40 35 30 25 20 15
Y-direction [mm]

Error on computed equivalent strain
Fig. 9. Comparison between analytical and computed strain field (linear model).

Error on computed equivalent strain
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Fig. 10. Error on the computed strain field (linear model).

the equivalent strain is depicted in Fig. 10. The large errors at the edges are striking. The
same conclusions can be reached when analyzing Table 1. All errors are relative to the
maximum equivalent strain in the strain field. The values of these maximum effective
equivalent strains are listed in the first column of Table 1.

The gradient deformation model constitutes a substantial improvement. The 2D-view
of the computed equivalent strain field and the analytical correct solution, analogous to
Fig. 9, is shown in Fig. 11. The approximation is excellent, even at the boundaries and at
the corners of the particle field. The accompanying error plot in Fig. 12 is represented using
the same scale as in Fig. 10.

Table 1 shows that the strains cannot be predicted correctly from an irregular dis-
placement grid when using the linear model. Regular distributions do not produce reliable
results with the linear model if non-linear variations exist in the strain field. The mean
relative error for the quadratic strain field with a regular grid reduces from 6.4% for the
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Fig. 11. Comparison between analytical and computed strain field (gradient deformation model).
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Fig. 12. Error on the computed strain field (gradient deformation model).

linear model to 1.4% for the gradient deformation model, while the maximum relative
error is reduced from 32.8% to 2.5%.

A simulation with a linear shear strain distribution leads to the same conclusions.
Another interesting example is offered by a more complex strain field. This strain field has
an embedded highly strained zone which is of particular interest in localization problems.
The maximum equivalent strain in the midfield is about 0.051. The errors in the prediction
computed with the linear model are given in Table 1. Again, the errors at the edges and
corners are obvious. Clearly, the strains at the edges and the corners are much more
accurate for the gradient deformation model. Even in the midfield, the maximum error is
reduced from 15.1% to 5.9%. However, the gain in precision is smaller than in the preceding
simulations. If the local gradient is too strong for the chosen discretization, a second-order
scheme may be insufficient and the discretization must be refined.
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Edge particle Corner particle
Strain group (8) Strain group (8)

Fig. 13. Enhanced strain groups near edges and corners for noisy displacements.

4.4. Comparing results computed on corrupted data

Experimental data are always corrupted by noise. An efficient strain computation
requires preliminary filtering of the corrupted displacement signals. The present analysis of
non-correlated white noise, and the filtering procedure to eliminate it, is based on the
singular value decomposition (SVD). It has been shown by many authors (Deprettere,
1988 ; Muijtens et al., 1990) that the singular value decomposition is an efficient tool to
accomplish this task. Many valuable properties of the singular value decomposition, includ-
ing existence proofs, numerical considerations and sensitivity results can be found in Golub
and Loan (1983). Without noise reduction, high noise levels lead to measurement errors
which supersede the model errors. Using a good filtering scheme, the random noise on
input signals can be reduced significantly, limiting the influence of the experimental errors.
A proper error analysis requires a statistical prediction of the confidence intervals for the
measured physical property. Such an analysis was carried out by Peters (1987) for the linear
model. However, the gradient deformation model is not well suited for a straightforward
statistical analysis because of the complexity of its mathematical formulation. In many
cases, the linear approach presents a very significant model error, exceeding any statistical
prediction towards the expected value of the strains.

To treat data more efficiently close to edges and corners and to improve statistical
weighting (in spite of a small decrease in model precision), the strain groups in edges and
corners, used in the gradient deformation model, are slightly modified. These enhanced
strain groups, shown in Fig. 13, use eight neighbouring particles instead of five and six,
respectively.

Using similar simulations as presented above, the model error appears to be the most
relevant contribution in almost all practical cases. The imposed displacement fields have
been perturbed by a normally distributed random noise signal. The variance of this noise
signal has been chosen equal to the noise variance that has been observed in associated
experiments. The linear and gradient deformation model have been used to compute strains
after the filtering procedures. The results of these simulations are summarized in Table 2
and Table 3. Table 2 shows the mean relative errors on the computed noisy strain fields,
while Table 3 lists the maximum relative errors.

A first simulation concerns a constant homogeneous strain field. When noise-free, such
a strain field is correctly described by both models with a zero model error. In the presence
of noise corruption (simulating measurement errors), the linear model gives more accurate
results than the gradient deformation model (mean and maximum error). This can be
expected, since it has been stipulated before that the statistical weighting in the higher-
order model is less efficient than in the linear case. In most cases, the model error for the
linear model is so important that the addition of noise does not result in substantial
changes of the computed errors. Relative to the theoretical model precision, the gradient
deformation model is more sensitive to noise, and requires good filtering. Enlargement of
the strain groups does not solve this problem, because of the negative effect on the dis-
cretization error due to the increase of the particle distances.

All other simulations lead to conclusions which favour the use of the gradient defor-
mation model. Regular grids with the linear model give mean errors in the midfield which
equal those by the gradient deformation model. The regular spatial distribution forces a
model error compensation between the different particles. This artificial error compensation
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Table 2. Mean relative errors on equivalent strain—computed from a noisy displacement field

Simulation results : Computed mean errors, relative to the maximum strain

Linear approach Gradient def. approach
Simulated Particle
strain fields zone Noise-free (%) Noise (%) Noise-free (%) Noise (%)
Midfield 0.0 1.0 0.0 1.0
Regul Edges 0.0 1.2 0.0 1.9
cgular Corners 0.0 1.6 0.0 2.2
Constant case Global 0.0 1.1 0.0 1.3
eg,,, = 0.094 Midfield 0.0 0.9 0.0 13
Edges 0.0 1.2 0.0 2.0
Irregular Corners 0.0 1.8 0.0 24
Global 0.0 1.0 0.0 1.5
Midfield 0.0 0.8 0.0 0.8
Regul Edges 8.9 8.8 0.0 1.6
cguiar Corners 19.6 18.6 0.0 14
Linear case Global 33 38 0.0 1.1
egpe, =0-117 Midfield 3.7 3.8 0.0 1.1
I 1 Edges 10.7 10.3 0.0 1.6
TTeguar  Corners 19.1 18.0 0.0 14
Global 6.3 6.2 0.0 1.3
Midfield 1.2 1.3 1.2 1.3
Regul Edges 15.3 154 1.8 2.1
cguiar Corners 32.7 33.3 2.4 2.9
Quadratic case Global 6.4 6.5 1.4 1.6
beq,,, =0-118 Midfield 34 3.5 1.1 1.4
I 1 Edges 16.6 16.7 1.8 23
TIegwar — Corners 323 329 2.2 3.4
Global 8.3 8.4 1.4 1.8
Midfield 5.1 5.1 2.5 24
Complex field Irregular Edges 12.8 12.8 2.0 3.0
&, =0.104 gu Corners 21.0 20.2 5.5 8.6
Global 7.9 7.9 2.5 2.8

vanishes in irregular grids. In real experiments, regular grids cannot be realized since some
random irregularity will always be present. It is particularly interesting to notice that
especially the maximum error is diminished by the higher-order approach. These practical
examples, computed from noisy data, show that the preceding conclusions made from noise
free simulations in subsection 4.2 remain valid. In sum, the linear model is recommended
only if no strain variations are expected. However, the determination of a constant strain
field can be accomplished easier by other techniques (LVDTs, strain gauges, .. .).

5. CONCLUDING REMARKS

A methodology has been proposed to compute strains from discrete sets of displace-
ments, which have been obtained using experimental techniques like Electronic Speckle
Pattern Interferometry (ESPI) (see Bergmann et al., 1995 or Galanulis and Ritter, 1993 for
more details), or using the Hentschel Random Access Tracking System (Zamzow, 1990).
Two possibilities have been explored, namely an existing method (Peters, 1987) in which
the variation in the local displacement field is truncated after the linear terms ( first-order
method), and a new approach (second-order method) in which quadratic terms are also
included in the variation of the local displacement field. A comparison on a number of test
cases with prescribed, known strain fields clearly shows the superiority of the second-order
method. The superiority of the higher-order approach diminishes somewhat if corruption
of the displacement signals is taken into account, especially for slowly varying strain
distributions. However, for cases with high strain gradients such as typically occur in
localization problems, the use of the higher-order approach is clearly advantageous.
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Table 3. Maximum relative errors on equivalent strain—computed from a noisy displacement field

Simulation results : Computed maximum errors, relative to the maximum strain

Linear approach Gradient def. approach
Simulated Particle
strain fields zone Noise-free (%) Noise (%) Noise-free (%) Noise (%)
Midfield 0.0 3.0 0.0 3.0
Regular Edges 0.0 4.1 0.0 5.7
g Corners 0.0 3.0 0.0 4.0
Constant case Global 0.0 4.1 0.0 5.7
Ceg,, = 0094 Midfield 0.0 3.0 0.0 5.9
Iregular  E9ESS 0.0 3.6 0.0 5.1
g Corners 0.0 24 0.0 4.1
Global 0.0 3.6 0.0 59
Midfield 0.0 2.5 0.0 2.5
Regul. Edges 19.1 21.5 0.0 7.4
cgular Corners 215 22.5 0.0 2.7
Linear case Global 21.5 22.5 0.0 7.4
Ceg, = 0-117 Midfield 9.7 10.3 0.0 5.1
Iregular  E9EES 240 26.1 0.0 7.2
g Corners 23.2 213 0.0 2.4
Global 24.0 26.1 0.0 7.2
Midfeld 1.2 2.9 1.2 29
Reeul Edges 29.2 32.3 25 7.5
cgular Corners 327 34.7 25 4.5
Quadratic case Global 32.7 347 2.5 7.5
£eq,,, = 0.118 Midfield 11.6 10.6 17 49
Trregular Edges 38.1 39.0 3.9 8.8
Corners 39.7 41.1 3.0 5.0
Global 39.7 41.1 3.9 8.8
Midfield 15.2 15.7 7.3 7.2
Complex field I 1 Edges 41.6 38.8 6.1 8.1
E,, = 104 TTBUAT Corers 418 40.2 10.6 133
Global 418 40.2 10.6 13.3

Another advantage is that in the second-order approach all particles can be taken into
account for the strain computation. Errors at edges and at corners then have approximately
the same error magnitude as in the midfield, as a consequence, strain distributions around
internal boundaries such as cracks can be determined much more accurately.

REFERENCES

Bergmann, D., Galanulis, K., Ritter, R. and Winter, D. (1995). Application of optical field methods in material
testing and quality control, electronic speckle pattern interferometry and grating method. In Photomécanique
95, pp. 257-265. Edition Eyrolles. ‘

de Borst, R, Sluys, L., Mihlhaus, H.-B. and Pamin, J. (1993). Fundamental issues in finite element analysis of
localisation of deformation. Engng Computations 10, 99-122.

Deprettere, F. (editor) (1988). SVD and Signal Processing—Algorithms, Applications and Architectures. Elsevier
Science Publishers B.V.

Galanulis, K. and Ritter, R. (1993). Speckle interferometry in material testing and in dimensioning of structures.
SPIE 2004, Interferometry VI: Applications, 269-275.

Golub, G. and Loan, C. V. (1983). Matrix Computations, North Oxford Academic/Johns Hopkins University
Press.

Hunter and Zerhouni (1989). Imaging distinct points in left ventricular myocardium to study regional wall
deformation. Innovations in Diagnostic Radiology (Edited by J. Anderson), pp. 169-190. Springer-Verlag,
Berlin.

Muijtens, A., Prinzen, J., Hasman, T., Reneman, A. and Arts, R. (1990). Noise reduction in estimating cardiac
deformation from marker tracks. In Special Communications. American Physiological Society.

Peters, G. (1987). Tools for the measurement of stress and strain fields in soft tissue. PhD thesis, Eindhoven
University of Technology.

Zamzow, H. (1990). The Hentschel Random Access Tracking System hsg 84.30. SP/E 1356, 130-133.



