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Abstract

The mathematical description of physical phenomena requires the use of scalars and tensors of various order. Since many of the
second-order and fourth-order tensors used in continuum mechanics possess certain symmetries, a compressed vector or matrix
representation, respectively, is frequently used in computational applications such as the FEM and BEM. Use of different storage
schemes for different tensors lead to an hypothetical nonuniqueness of such matrix representations. The present paper offers a clar-
ification by investigation of the structure of the underlying six-dimensional vector space. It identifies various types of matrix repre-
sentations as covariant, contravariant or mixed-variant coordinates in that vector space and thus proves consistency of the matrix
representation with classical tensor analysis in R>. Furthermore, it is shown that an ortho-normal basis for the underlying tensor
representation in R*® does not automatically lead to a normalized space for the compressed matrix representation in R®. Thus, dis-
tinction of covariant and contravariant coordinates is necessary even in that case. Theoretical findings are worked out in detail for
symmetric second-order and fourth-order tensors in R*. Example applications on commonly used fourth-order tensors as well as a
comparison of possible computational implementations close the paper. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The mathematical description of physical phenomena requires the use of scalars and tensors of various
order [1-5]. Typical applications of scalars are, e.g., potential functions and temperature, and of vectors
(i.e., first-order tensors), displacement or velocity fields or acting forces. Second-order tensors are used as
various stress tensors (Cauchy, Kirchhoff, first and second Piola—Kirchhoff, etc.), strain tensors (Cauchy
Green—Lagrange, Almansi—Euler, Henkey, etc.) or damage tensors. Typical fourth-order tensors are: the
material stiffness tensors, viscoelastic and elastoplastic tangent operators, or structural tensors for aniso-
tropic materials.

All of the above-mentioned tensors obey certain symmetries. Making use of these symmetries, the com-
putational effort for tensor operations can be significantly reduced. Thus, most implementations in com-
putational mechanics, such as the Finite Element Method (FEM) or the Boundary Element Method (BEM)
make use of a compressed vector or matrix representation of symmetric second-order and fourth-order
tensors (see, e.g., [6-9]). A detailed description of the transition from symmetric tensors into matrix repre-
sentation is given in [6]. Nevertheless, the explanation given therein is restricted to the matrix representation
of a material stiffness tensor relating a strain tensor with a stress tensor. In what follows, this particular case
will be identified as contravariant representation of a symmetric fourth-order tensor. The mentioned re-
striction on the tensor-to-matrix transition given in [6] may cause errors when constructing matrix repre-
sentations of compliance tensors as used in viscoelasticity or some algorithms for elastoplasticity.

0045-7825/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.
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2754 P. Helnwein | Comput. Methods Appl. Mech. Engrg. 190 (2001) 2753-2770

Even though the use of matrix representations has a long tradition, the transition from arbitrary fourth-
order tensors to 6 x 6-matrices offers hypothetical non-uniqueness of the matrix representation. A popular
example is the matrix representation of the fourth-order deviatoric operator. Applied to the Cauchy stress
tensor ¢ it defines the deviatoric stress tensor s as follows:

s [ -1 -1 0 0 07 (d"
522 -+ 3 -1 000 o2
5 L1z 0 0 0f]e®

s=01:6 = 3 i3 1
s 0 0 0 1 0 0 a'? ()
s23 0 0 0O 0 1 0 a2
s L 0 0 0 0 0 1] \¢g™

The right-hand expression of (1) shows the matrix representation of the tensorial expression given on the
left-hand side.

Using the deviatoric operator in the elastic constitutive relation between the strain tensor ¢ and devia-
toric stress tensor s yields the matrix representation as

sl '% _% —% 0 0 07 (eqy

§2 _% % —% 0 0 O &)

N §3 1 1 2 0 0 0 £33
s=2GI":¢ < L =261 2 o (2)

s 0 0 0 5 0 0f]mm

§23 0 0 0 035 0f]fns

I L0 0 0 0 0 1] Uy

where y;; = 2¢; are the shear components of the engineering strain. This definition of & satisfies the in-
variance condition s : & = {s'! s 3 §'2 s "M ey e £33 710 Va3 Va1 ) -

Comparing the two matrix representations of 1" in (1) and (2) demonstrates the source of the hypo-
thetical non-uniqueness of the compressed matrix representation. Two more representations arise in ap-
plications using a sequence of fourth-order tensor operators acting one on the other.

The aim of the present paper is to give a clarification on the supposed non-uniqueness on the basis of a
six-dimensional vector space and the identification of various types of matrix representations as covariant,
contravariant or mixed-variant coordinates in that vector space.

In Section 2, the derivations for the unified explanation of the compressed matrix representation of
symmetric second-order and fourth-order tensors will be given.

The theoretical findings given in Section 2 will be discussed in Section 3 by means of the vector repre-
sentations for stress tensors and strain tensors, respectively, as well as the matrix representations for two
commonly used fourth-order tensors. Furthermore, the influence of the type of representation on the
computational implementation is discussed by means of a simple numerical example.

2. Matrix representation as first-order and second-order tensors in a six-dimensional vector space

The aim of this chapter is to show that the compressed matrix representation of symmetric second-order
and fourth-order tensors in R® has tensorial character in R®. In order to prove this proposition we will
develop a basis (it will be identified as a set of symmetric second-order tensors) for the considered vector
space in R®. This enables the definition of a metric and an inner product for this space.

Based on classical tensor analysis we will show that all rules regarding conversion between covariant,
contravariant and mixed-variant tensor coordinates appear in the six-dimensional vector space governing
the vector (6 x 1-matrix) representation of symmetric second-order tensors. Using this knowledge, in
Section 2.2 we will extend the theory to tensors in R® representing symmetric fourth-order tensors in R>.

A brief summary of the developed framework will be added in Table 1 at the end of this section.
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For the derivations given in this section, the following conventions will be used:

e Boldface symbols T, U and V denote second-order tensors in R* and A denotes a fourth-order tensor in
R’

e A bar over a boldface symbol, e.g., T and A, generally indicates vector (as 6 x 1-matrix) and matrix rep-
resentation, respectively. In order to indicate special representations, i.e. covariant, contravariant or
mixed-variant, the notations {7,}, {7} or {4%} will be used instead.

e The indices i, J, k, I, m, n, ¢, r, s, t indicate summation over 1, 2, 3 while the indices «a, b, ¢, d indicate
summation over 1,2,...,6.

e The lowercase boldface symbols g,, i = 1,2, 3, denote the covariant base vectors in R*. They are connect-
ed to a generally non-normalized skew and arbitrary curved coordinate system. The special case of an
ortho-normal basis in R is marked by a hat (g, = §' with coordinates U’ = U, and g Qg = ¢ ® ¢/ with
coordinates 77 = Tj).

e The uppercase boldface symbols G, and G“, respectively, denote the covariant and contravariant sym-
metric tensors used as the basis in the definition of the associated six-dimensional vector space.

2.1. Representation of symmetric second-order tensors as six-dimensional vectors

In this section we will derive the basic relations of a six-dimensional vector space used for the description
of the vector (6 x 1-matrix) representation of symmetric second-order tensors. For this purpose we consider
the following equivalent representations of a second-order tensor T € R* x R*:

T=T'gog =Tgog. 3)

The mixed-variant representations T = T j.gi g =T'g® g, are not taken into account in the subsequent
development. In this paper we will consider only tensors T € &, where

S ={TeR xR |T=T = T"=T"T,=T;, T, =T/} 4)

is the space of symmetric second-order tensors in 7R3 o B
Let us introduce the six-tuple T = {7°} = {T' 7> T° T* T° T°}'. We will refer to the components 7* as
coordinates of the vector space defined by

9 ={TeR" | TG, =T e ¥} (5)

The tensors G, € % form the covariant basis of the vector space &*. In what follows they will be referred to
as base tensors. Definition (5) describes the mapping from a first-order tensor in R® (i.e., from a vector in
R®) onto a second-order tensor in & C R® x R>.

Then we define the inner product (U, V) with U and V € & as

(U, V) :=U:V = U7*G, : G, = U*V*G,, (6)

Gab = <Ga, Gb> = Ga : Gb = Gb : Ga = <Gb, Ga> = Gba (7)

are the covariant coordinates of the metric tensor in .%*. Note that the summation convention in .¢”* forces
the sum 3¢ .
As can be seen from (6) and (7), the inner product defined by (6) satisfies

(O, V)= (V,0) and (0,0) >0 VU£0. (8)

In order to obtain a simpler expression for the inner product defined by (6) we introduce a contravariant set
of base-tensors in . by the condition

(G,,G") = (G’,G,) = 3., 9)
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where 5Z are the coordinates of the Kronecker tensor in R®. According to (6), any tensor U € % can be
described by means of U € ¥ as

U = {G| G, G; G, G5 G¢}{U"}. (10)
Hence, the contravariant base tensors G can be expressed as

G’ = G"G,. (11)
Building the inner product of (11) with G, yields under consideration of (9) and (7)

(G.,G") = G"(G,,Gy) = " = G,G"™. (12)
From (12) we obtain the coefficients G** as

(6"} = {Gu} ™! (13)

and by means of (11) the contravariant base tensors G°. Eq. (13) is a well-known definition of the con-
travariant coordinates of the metric tensor in R®. Thus, the coefficients G* = (G*,G") are identified as
those coordinates.

Using the contravariant base tensors G“, the coordinates T are obtained from definition (5) and under
consideration of (9) as

IT:G'=T1'(G,.G") =T’

(14)
Eq. (14) defines the map & — 9.
Building the inner product of the invariance condition
T=T7TG,=T,G" (15)

with G, and G’, respectively, yields under consideration of (9) and (11) the transformation for the coor-
dinates in " as

T, = GuT* = G T T’ = G*T, = GT,

and (16)

Using matrix notation, the transformations from contravariant to covariant coordinates and vice versa are
obtained as

{T;} = {Gn}{T"} and {T"} ={G"HT.}. (17)

Based on the covariant and contravariant coordinates as defined by (16) the definition of the inner product
as given by (6) can be simplified as follows:

(O,V) = U, = 0,7 ¥V U,Ves (18)
Using vector notation (6 x 1-matrix), definition (18) can be expressed as
(U, V) = {0} {Th} = {UJ{7"}. (19)

The inner product as given by (18) and (19) is equivalent to the scalar invariant tr UV = U : V of the related
tensors U and V € .

Remark 2.1. Note that the matrix operations {U,}{V,} and {U“}'{F’} have no tensorial equivalent and
thus are not invariant under changes of the coordinate frame.

2.1.1. Base tensors and metric of the most common matrix representations
The most common compressed representations of symmetric tensors in continuum mechanics are the
direct use of coordinates for stresses and the use of engineering strains (which use y,; = 2¢; for the shear
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components) as the components in a vector (6 x 1-matrix) representation. Using the interpretation as a six-
dimensional vector space as outlined above, it will be shown that both representations are equivalent but
represent covariant and contravariant coordinates in &,
In order to obtain such a representation we have to define the covariant base tensors as follows
G=g®g, G=g0rg+egag,
G=208%, G6:=g88+8®8, (20)
G =208, G =808 +8 8.

Consideration of the covariant coordinates g; = g; of the metric tensor in R* yields the related metric
tensor — given in matrix notation — as

[ggn  gn&n &g 2g11812 2g12831 2g31811
82282 823823 281282 282082 2¢23812
(G} = 833833 2g3182 2223833 2g33831 1)
Symm. 2(g11gn + g12812)  2(g1282 +g3182)  2(g31812 + g2811)
2(g22833 + 823823)  2(g23831 + £12833)
L 2(g3gi1 + g31g31) |

Remark 2.2. For the special case of an ortho-normal basis {g,,8,,8,} in R, the metric tensor (21) of the
six-dimensional vector space & simplifies to

1 0 00 0O
01 00 0O
001 0 0O
{Gab} = 00 0 2 0 0 (22)
000 0 20
000 0 0 2

As can be seen from the coordinates of the metric tensor (22), even in this particular case, %" is an or-
thogonal but in general not normalized vector space. Thus leading to U, # U“ even if U, = U”

Substitution of (21) into (13), of the result and (20) into (11), and consideration of the transformation
rule g’ = g'g; with {g"} = {g;} " yields the contravariant base tensors as
G =¢g'og, G=5Egod+gag),

GC=grg GC=x-gcg+gog), (23)

—_ = =

G=g'og, G=-(og+tgad).

NS}

Condition (9) can easily be verified for G, and G” according to (20) and (23), respectively. The coordinates
T* are derived from (3) and (14) by means of (23) as

Tl — Tll TZ — T22 T3 — T33 T4 — 1(T12 + TZI) — T12 TS — l(T23 + T32) — T23
) ) ) B ) B )
- 1
T6 — i(]"31 4 T13) — T31, (24a)

or in vector (6 x 1-matrix) notation as

‘{Tw} = {r" 72 7% 712 T T31}"

(24b)
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Substitution of (24a) and (21) into (17) and consideration of the transformation rule 7;; = gg; T" yields the
covariant coordinates in " as

Ty =Ty, T =Tn, T3=Tsy,
Ty=To+ Ty =2T, Ts=Tsy+ Ty =2Ds, Ts=Ty+Ti3=2T, (25a)

or in vector (6 x 1-matrix) notation as
{T.} ={T\ T Ty 2T1; 2153 2T} (25b)

According to the representation theory of vector and tensor functions, any vector possesses exactly one
scalar invariant /. By means of the equivalence

I1=TT, =TT, « I={T}{T,}=T:T, (26)

this invariant is identified as the second invariant S, = tr T> = T : T of the second-order tensor T € .
Thus, even if the vector (6 x 1-matrix) representation enables the full and unique reconstruction of T, it
reduces the number of invariants from three to one. Hence, the matrix representation T € .%* does not
recover the whole integrity basis of T € &. This shortcoming has been pointed out in the literature for
second-order tensors as well as for fourth-order tensors [4].

Remark 2.3. The derivations given in (5)—(25b) have shown that in consequence of the mapping & — &~
even an ortho-normal basis in R* may yield a non-normalized basis in the six-dimensional representation,
i.e., in &*. Thus, one needs to take care to distinguish between covariant and contravariant coordinates in
& even in the special case when there is no difference between them in the underlying space &.

2.1.2. Normalized tensorial basis in &~

An ortho-normal basis G, = G in . can be obtained from an ortho-normal basis {g,,8,,8,} in R* and
normalization of the tensorial basis given in (20). This leads to a diagonal shape of the metric tensor. The
normalization is achieved by

1 . .
——G, and G'=—G"=VG“G, =G, no sum 27
VG, Ve (no sum) 27

where G, is defined by (20) but based on an ortho-normal basis {g,,8,,8;} instead of a general basis
{g,,8,,8;}. Using the related coordinates of the metric tensor as given in (22) yields the ortho-normal basis
in & as

G, = !

A N R R o o 1 . R . .
G =G =g ®g, G4:G4=—2(g1®g2+g2®g1),
A ~ . R R o 1 . . . .
G:=G=808, G=6G=—(808+8018), (28)
V2
A N A N 1
G=G=¢g,28, G=GC"=—(8,08 +8 28,).
3 g 28, G ﬁ(gs g +8 ®8)

The related coordinates are obtained as 7% = /G, 7% and 7% = \/G“T* = (1/,/G,,)T,. Using (24a) and
(22) as well as (25a) and (22) yields

“ . . . . 1 . “ .

Ly =T" =Ty, T4:T4ZE(T12+T21):\/§T127

N N . . . 1 . . N

L=T"=1Tp, TI3=T1 2—2( ot T5) = V2T, (29)
. . . . . 1 . . .

=T =Ty, To=T1"=—(Ty+Ts) = V2T,
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or in vector (6 x 1 matrix) notation

{77}y = {1} = (T B Ts V2112 V215 V213, } | (30)

Thus, in the ortho-normal representation of ¥ no distinction between covariant and contravariant rep-
resentation is required.

2.2. Representation of symmetric fourth-order tensors as six-dimensional square matrices

Now consider a fourth-order tensor A € R* x R* x R® x R® and the following equivalent representa-
tions:

A=AMg 0gogog =Adug g ogog =4 gogedeg =4fdegdog e (31)
In most applications in continuum mechanics using fourth-order tensors, A is in
T ={AcI xS CR xR xR xR | Ay = Ajus = A = Aijur}, (32)

i.e., the space of fourth-order tensors in R® with symmetries with respect to the first two and the last two
indices of their covariant as well as their contravariant coordinates. Note that the mixed-variant coordi-
nates satisfy 4% = 4/ but 4 # AH

Now introduce a 6 x 6 matrix representation of the form

T 12 3 4 5 16
PR P
- I S I
JNO g0 8 M g e
PO 1B 50 5506
JOU 02 83 %4 q55 %6

A:{gah}:

and view the matrix elements as coordinates of the second-order vector (tensor) space .7 * defined as
T :=[A € R x R|4’G, 2 G, = A € 7). (34)

The tensors G, € % are the base tensors of the vector space .%*. Definition (34) describes the mapping from
a second-order tensor in R® onto a fourth-order tensor in 7.
The coordinates 4% can be obtained from definition (34) and under consideration of (9) as

G':A: G =4“G"G.){(G,;G") = 4

(35)

Eq. (35) defines the map  — 7 *.
Using definition (23) for the base tensors G* and the transition formula (35) for the map J — 7" leads
to the coordinates

14_ab _ (Al'jk/ +Ajikl +Aijlk +Ajilk) :Aijkl7 (36)

ENg-

where a = 1,2,3,4,5,6 maps to ij(kl) = 11,22,33,12,23, 31, respectively. The 6 x 6 matrix representation
based on the contravariant coordinates of A € 7 given in (36) thus is obtained as
Allll A1122 A1133 A1112 A1123 A1131

A2211 A2222 A2233 A2212 A2223 A2231
A33ll A3322 A3333 A3312 A3323 A3331

A121] A1222 A1233 A]2]2 A1223 A123]
A2311 A2322 A2333 A2312 A2323 A233l

A3111 A3122 A3133 A3112 A3123 A3131

{4} = (37)
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In cases where A € 7 exhibits the extended symmetry
Aijkl :Aklij7 (38)

the matrix representation given in (37) exhibits the symmetry 4’ = 4™, ie., {4%} = {4?}".
Based on the invariance condition

A=4"G,®G, =4G,®G" = 4'G* ® G, = 4,G* ® G (39)

the inner products G* : A : G,,G, : A: G”, and G, : A : G, yield the transformation rules for the mixed-
variant and covariant coordinates, respectively, as

A_flb = thA_acv A_;lb = GacA_L‘bv A_ab = GﬂchdA_Cd (40)

These are the standard transformations of second-order tensors in R°.
Using (21) and the transformation rules

Aljkl = gugi A", A;f/-kl = girgjsArSkl7 A = 2ir&is8u&1gA™, (41)
leads to the matrix representations

(Al Ay Al 240, 245 24757
ANy AT, AT, 247, 247, 24%,
AN, AT, ARy 247, 247, 247,
AGy A, A5 24T, 245, 245
AR AB, ATy 247, 245, 24%,
LA Ay Ay 247, 247 247

{"{ab} = ) (423)

(At AP AR At A A
Ap' At An Ay A Ay
At AT AR AR AR Ay
2470 2437 243 2477 2473 243"
250 24537 2453 2457 2457 245
(245" 2452 2457 2457 245370 2457

{“Iab} = ) (42b)

and

(A Aun Auss 24un 24 240
Ay Axyn Anzz 24Ami 243 243
_ Aszzsin Aszn Aszz 24m10 24333 243
{Aw} = . (42¢)
241011 241m 24133 44 4413 4413
240311 242 243 4Axin 44 4das

| 243111 243120 243133 4432 44313 443131 |

The matrix representations based on mixed-variant and covariant coordinates as given in (42a), (42b), and
(42c), respectively, can be obtained directly from the contravariant representation (37) by means of the
transformations given in (40) as follows:

{43} = {A“HGuw}, (4]} = {GuHA"Y, {dw} = {GuHA HGCu}- (43)
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Table 1
Summary of the framework for the tensor-to-matrix transition developed in Section 2. No restrictions to the coordinate system in R?

apply

Covariant base vectors and metric in R*:

{8188} =2 =8¢ M
Contravariant base vectors and metric in R defined by g, - g/ = b,’ :

{g.g. g} = {¢"} = 1{g ¢} = {g;}"' (In)
Covariant base tensors in &* C R®:

G =g ®g, G=¢g00g+sRg,
G =208, G=gRg+eg g, (I11)
G =g, 28, G=g®g +g Qg

Contravariant base tensors in &* C R® defined by (G,,G") = &'

G =g'eg, =lgeog+gxg,
G =g g, —%(g og+g®e), (V)
GC=geg G =lgzg+egag)
Metric of #* C R®:
Gw = (G.,G) =G, : Gy, G”=(G"G"N=G":G", {G*}={Gu}" V)

Transition from & C R* x R® — 9" C R%

T*=T:G" T,=T:G,=GuI" (VI)

{T}y ={r" 72 73 12 73 13, (T = {1}, Ty Ts3 2T 2To3 275} (VII)

Transition from 7 C R x RPx R* x R* — 7* c R® x R® :

AP =G A: Gl = 4(A1/AI S TR gl +A_/‘ilk) (VIII)
A'=G,:A: G’ =G,A" (IX)
/I‘lb = Ga A G}, = G},L./Iac (X)
14:1}1 =G,:A:G, = GacGhdgrd (XI)

For the matrix representation of (VII)~(XI) see (37) and (42a)—(42c). For the matrix notation of the conversion from
contravariant to covariant and mixed-variant coordinates see (43).

2.2.1. Normalized tensorial basis in 7" .
In Section 2.1.2 an ortho-normal basis G, = G“ has been derived and given in (28). Substitution of (28)
into (35) yields the matrix representation for a normalized vector space 7 * as

/illll 141122 /11133 \/2/11112 \/5/11123 \/5141131_
1‘1221 1 /12222 142233 \/5142212 \/21412223 \/5/12231
1‘13311 /13322 /13333 \/5/13312 \/2/13323 \/5/13331
\/21‘]1211 \/2/11222 \/2141233 21411212 21411223 21411231
\/5142311 \/5/12322 \/5142333 21412312 21412323 2/12331
L \/21413111 \/2/13122 \/2143133 21413112 21413123 21413131 .

satisfying the identity

{Aw} = {4} = {43} = {4]}. (45)
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Thus, in the ortho-normal representation of 7 * no distinction between covariant and contravariant rep-
resentations is necessary.

3. Example applications

Within this section we will study the application of the proposed framework to the finite element im-
plementation of tensorial equations. First we will review the common vector representation and identify it
with the covariant and contravariant coordinates in .

In the subsequent Sections 3.2 and 3.3 we will investigate the effect on the fourth-order identity tensor
and on the linear elastic material stiffness tensor. The first tensor appears as part of many operators such as,
e.g., the deviatoric operator used in the problem given in Section 1. The material stiffness tensor and, in
particular, its inverse are representative for many fourth-order tensors appearing in continuum and algo-
rithmic tangent operators for nonlinear elasticity, viscoelasticity or elastoplasticity.

Applications for mixed-variant representation may occur in nonlinear creep laws for isotropic and
anisotropic material where a series of fourth-order tensor operators act on a stress tensor or strain tensor.
Avoiding the overhead due to a discussion of such a material law a simple numerical example application
will be discussed in Section 3.4. Nevertheless, this example will demonstrate all steps of the tensor-to-matrix
transition as required in most numerical implementations of tensorial equations.

3.1. Vector representation for stress tensors and strain tensors

The intention of this short section is to review the vector representations for stress tensors and strain
tensors as used in standard finite element books using the presented mathematical framework. Consider
any symmetric stress tensor ¢ with contravariant coordinates ¢”/. The commonly used vector representation
proposed in, e.g., [6-8] is

{O'} _ {O_ll 022 0.33 012 0_23 0_31}7. (46)
Comparing (46) with (24b) identifies the standard vector representation of stress tensors as the contra-
variant coordinates of ¢ in &*.

Now consider any symmetric strain tensor & with covariant coordinates ¢;. The vector representation
given in, e.g., [6-8] is

{e} = {en e &3 2610 2603 263} (47)

The term 2¢;,i # j is often referred to as the engineering strain y,;. Comparing (47) with (25b) identifies the
standard vector representation of strain tensors as the covariant coordinates of g in %",

Remark 3.1. The representations given in (46) and (47) are valid for arbitrary coordinate systems. The
special case of ortho-normal coordinates then implies ¢¥ = ¢/ = of'j =0 and ¢/ =¢/ = sfj = ¢;;, which is
not required for the proposed general framework.

3.2. The fourth-order identity tensor
The fourth-order identity tensor [ is defined by the condition (see, e.g. [4])
1:U=10, (48)

where U € R® x R? is an arbitrary second-order tensor. Restricting U to ., i.e., to symmetric second-order
tensors, this condition is usually rewritten as

I:U=-(U+U"). (49)

NS
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Using (49) leads to a fourth-order tensor [ € 7 while (48) in general does not. ' From condition (49) we
obtain the coordinates of [ as

{1y, = 5(55} +0,8,) = W = 5 (gngit + gugin)- (50)

l\JI'—‘

3.2.1. Ortho-normal coordinates in R’

Consider ortho-normal coordinates in R* and the definition of the base tensors as given in (20). This
yields the coordinates of the metric tensor in %" as given by (22). The matrix representations of [ are found
by means of (37) and (43) as

1 000 00 1 000 00O
010000 01 0000
—ab 001 00O 001 000
=10 001 0 of =10 0020 0 (51a)
000010 00 0020
000004 00 00 0 2
and
1 000 00
01 00 00O
7 001 0 00O
000 010
0 00 0 01
For better understanding of the above representations consider the trivial operation
I:0=1. (52)
Rewriting it using coordinate (index) notation yields
e R US U SR U (53a)
or
1 Ly = 0 = {1 H e} = {15} (53b)
or
1,7 = P (1) = (1) (53¢)
or
”mnl]mnl_l]i H{Ha}{ b}_{l] } (53d)

The correctness of (53a), (53b), (53¢), and (53d) can be easily verified by means of (51a) and (51b).

Remark 3.2. Note that the matrix representations (53a), (53b), (53c), and (53d) of the trivial identity
(52) are different although the coordinates I, = 1" = I/ * — Y, are identical because of the ortho-normal
basis in R*. Hence, covariant and contravariant coordlnates need to be distinguished in the matrix rep-
resentation.

! Condition (48) leads to the coordinates {1}”, = 5.4/
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3.3. Isotropic elasticity: material stiffness tensor

The material stiffness tensor for linear elastic material is just one example of a tangent operator ap-
pearing in mechanics. Nevertheless, this tensor and, in particular, its inverse are sufficient to demonstrate
the consequences of the framework developed in Section 2. The discussion given in this section should
enable the reader to answer most questions observed in the tensor-to-matrix transition of tangent operators
in linear viscoelasticity and elastoplasticity.

The material stiffness tensor C for isotropic linear elasticity is defined as (see, e.g. [9])

CK1®1+2G(U;1®1), (54)

where K is the bulk modulus, G the shear modulus and 1 is the second-order identity tensor with coor-
dinates {1}; = 9/ ({1}, = g;). The inverse of C is obtained as

1 1 1
671 = —1® - —1®
9K1 1 2G (H 31 1) ’ (55)

Eq. (55) can be verified by means of

c:Cc'=1 (56)

3.3.1. Ortho-normal coordinates in R’

In most applications in continuum mechanics the base tensors given in (20) are used. Furthermore, the
symmetric stress tensors (Cauchy stress, Kirchhoff stress and second Piola—Kirchhoff stress) are restricted
to the contravariant representation and the strain tensors (Cauchy strain, Almansi strain, Greens strain,
Henkey strain) are restricted to the covariant representation. Such a choice enables simple physical in-
terpretation of the coordinates ¢ and &, of the matrix representation.

As in Section 3.2.1, consider ortho-normal coordinates in R* and the definition of the base tensors as
given in (20). This yields the coordinates of the metric tensor in & as given by (22).

The matrix representation of the fourth-order tensor 1 ® 1 is identical for covariant, contravariant and
both mixed-variant representations given in (37), (42a), (42b), and (42c), respectively. It is obtained as

Tol,) ={Tol"}={Tol,}={Ta1,)} =

S O O o o O
S O O o o O
S O O o o O

—

W

~

S~—

O O O = = =
O O OO = = e
O O O = = =

The contravariant description of C follows from (54) under consideration of the left-hand equation in (51a)
and (57) as

(242G A A 0 0 07

.+ 2G A 0 0 O

_ A+2G 0 0 O
Cab — , 58
ey 6 o o (58)

symm. G 0

L G
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with 2 = K —2G. The contravariant representation of the inverse tensor given in (55) then follows as

[+ 2 0 0 0
fdg 20000
A(~1)a A+s2 0 0 O
{CEDY = 6 o ol (59)
6
symm. ic (1)
L 46 |

with 2 = 1/9K — 1/6G. It can be proven easily that the contravariant representation (59) is not the inverse

of the 6 x 6-matrix representation of C given by (58). Rewriting (56) as {C*}{C"} = {14} yields the
consistent representation of the inverse as the covariant representation of C™' as

it L0 00
A+ _I] 0 00
e — 2 5 0 00 60
{ ab } lG ? 0 ( )
symm. G (1)
L G

The inverse to the contravariant representation (59) of C' can be found by rewriting (56) as
{C, }{CV*Y = {T*}. Thus, it is the covariant representation of C as

442G A A 0 0 0

A+2G A 0 0 0

—— A42G 0 0 0
{Cah} - 4G 0 0 (61)

symm. 4G 0

4G

Furthermore, a mixed-variant representation based on {C:*}{C"""} = {I*} is possible. An example of the
mixed-variant approach will be given in Section 3.4.

Remark 3.3. Note that even if the fourth-order tensor C € 7 satisfies the symmetry condition (38), its
mixed-variant representation does not need to be symmetric. Nevertheless, for the proposed isotropic
tensor we obtain a symmetric mixed-variant representation.

3.3.2. Ortho-normal coordinates in S*
Using an ortho-normal basis in %" as given be (28) leads to the matrix representation given by (44).
Hence, the material stiffness tensor C is of the form

A+ 2G A A 0 0 0
A+ 2G A 0 0 0
- 4 4 - A+2G 0 0 0
{Cab} = {C b} = {@4b} = {Cab} = 2G 0 0|’ (62)
symm. 2G 0
2G
and the inverse tensor C~! is obtained as
R 20 0 0]
i % A 0 0 O
{@(;1)} _ {@(—])ab} _ {C(*l)i} _ {@(—l)b} _ 2 +% 0 0 0 (63)
a .b a i 0 O
symm. = 0
i %
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Such a representation avoids the treatment of covariant and contravariant representations. The reason why
it it not standard in commercial as well as scientific FEM-codes is the lack of a direct physical interpretation
for the coordinates 7% = T, as given by (29).

3.4. Derivatives of second-order tensor functions

Fourth-order tensors occur in tangent operators of nonlinear second-order tensor functions. In mechanics
such tensor functions represent, e.g., the mathematical formulation of material laws. For some of these
tangent operators the tensor-to-matrix transition requires the use of a mixed-variant matrix representation.
Since the discussion of material laws exceeds the aim of this paper a numerical example has been chosen such
that the application of mixed-variant matrix representations can be demonstrated without being forced to
discuss any material law. Nevertheless, this example carefully points out why a mixed-variant matrix
representation makes sense. The observations apply to any advanced material model without restric-
tions.

3.4.1. Iterative solution of a nonlinear tensorial equation
A common tensor function in finite deformation continuum mechanics is the exponential function
exp[X]: & — &. It is defined as

o0 1 "
Y = exp[X] := ”Z;EX’ (64)
where X € & and Y € & are symmetric second-order tensors and X", n > 1, is defined by X" := X - X"

with X' = X.
Now consider the problem formulated as follows: Solve the nonlinear equation

IR(X) := Y — exp[X] = 0] (65)

for X € & for a given tensor Y € &.
Note that the considered problem possesses a closed form solution

X=In(Y] = 3 In(u)h (66)

o=1

where pu,, u, and y; are the real eigenvalues of Y and {1%1} the related eigenvector bases. An algorithm
for the direct computation of the eigenvector bases is given in Appendix A. Because of the logarithm in
(66), a solution exists only for three positive eigenvalues of Y. This solution is used for verification
only.

The derivative of the exponential function frequently appears as part of a tangent operator in more
realistic applications where closed form solutions cannot be obtained. Thus, for demonstration purposes,
let us solve (65) by means of a full Newton—-Raphson iteration in .#*. The related iterative procedure in & is

Table 2
Algorithm for the iterative solution of the non-linear tensorial Eq. (65)

Initiate £ = 0 (k is the iteration counter) and X© = 1+ small perturbation
R® =Y —exp[X®¥] I

If R® : R® < tolerance, X is the solution of (I) at the chosen tolerance.
Otherwise proceed with

dx exp[X®]: AX = R®W = AX = (3x exp[X¥))~' : RW (IT)
XED = x® 4 AX (111)

Set k = k + 1 and proceed with (I).
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Table 3
Matrix representation of the iterative procedure using a mixed-variant representation of Oy exp[X]

Initiate k = 0 and {X”} = T + small perturbation = {1.00 1.01 0.99 0 0 0}
{RY} = {¥.} — {expX"], } @

If (R® R®) = {RW}{RW} < tolerance, {X¥} is the solution of (I).
Otherwise proceed with

{ox exp[XM]7HAX,} = {RM} = {AX,} = {ox exp[X ¥V RV} (1)
Y = (09 + {AX,)} (I1I)

Set k =k + 1 and proceed with (I).

shown in Table 2. The tangent operator Ox exp[X] is given in Appendix A. It is a fourth-order tensor
possessing all symmetries listed in the definition of J~ given in (32).

The transition of the sequence (I)—(III) in Table 2 to its matrix representation can be done by means of
the covariant, the contravariant or both mixed-variant formulations for dx exp [X].

Let us consider the covariant represtation for X and Y as given by (25b). Then the mixed-variant
approach as given in Table 3 seems to be the natural matrix representation of the previous iteration al-
gorithm.

Remark 3.4. The fourth-order tensor 0x exp [X(")] as defined in Table 6 is in .7, i.e., it is symmetric, while
the mixed-variant matrix representation given by (42a) is not symmetric. Thus the formulation given in
Table 3 requires the inversion of a non-symmetric 6 x 6-matrix.

In order to avoid the inversion of a non-symmetric matrix, the algorithm given Table 2 may be refor-
mulated by means of the covariant matrix representation of Ox exp [X] as shown in Table 4. This preserves
the symmetry of the fourth-order tensor even in the 6 x 6 matrix representation but requires changes in the
update of {X,}.

3.4.2. Numerical example

In order to verify the matrix representations proposed in Tables 3 and 4 a numerical test will be per-
formed in this section. In order to demonstrate the effect of an incorrect tensor-to-matrix transition two
examples both with inconsistent matrix representation are added and compared with the two proper
versions.

Solve Eq. (65) for X with

72 4
Y=1[2 5 1|—{F)}={756428)" (67)
4 1 6
Table 4

Matrix representation of the iterative procedure using the covariant representation of dx exp[X]

Initiate k = 0 and {X”} = T+ small perturbation = {1.00 1.01 0.99 0 0 0}’
(R} = {7} — {expX"],} (D

If (R® R®) = {RW}{RW} < tolerance, {X¥} is the solution of (I).
Otherwise proceed with

{oxexp[XW],, HAX"} = {RV} = {AX"} = {ox exp[X W] "™ RV} (1)
(B} = (59} + {Gru HAX"} (1)

Set k =k + 1 and proceed with (I).
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Table 5
Residual norm (R®, R®)/(R® R®) obtained by means of the representations according to a: Table 3, b: Table 4, ¢: symmetrized
approach given by (69) and d: with covariant representation but update of {X,} according to Table 3

k a b c d
0 0.10000 x 10*! 0.10000 x 10*! 0.10000 x 10*! 0.10000 x 10*!
1 0.36210 x 10+2 0.36210 x 10+2 0.36210 x 10+2 0.22839 x 10!
2 0.36757 x 10! 0.36757 x 10*! 0.21558 x 108 0.16113 x 10*°
3 0.22245 x 10+° 0.22245 x 10*° 0.51979 x 10*7 0.82743 x 1072
4 0.32714 x 1072 0.32714 x 1072 0.65574 x 10+¢ 0.11551 x 1072
5 0.13870 x 10~3 0.13870 x 1073 0.87480 x 10+3 0.27938 x 1073
6 0.27840 x 1012 0.27840 x 1012 0.11768 x 10*3 0.69325 x 104
7 0.11214 x 107% 0.11214 x 107% 0.15658 x 10+ 0.17266 x 10~
8 : 0.43084 x 10~°
9 divergent 0.10761 x 1073
10 0.26890 x 107¢
11 0.67208 x 1077
12 0.16800 x 1077
13 0.41998 x 108
14 0.10499 x 10-8
15 0.26247 x 10~

Eq. (66) as well as both iterative procedures given in Tables 3 and 4 yield the result

[1.667887
1.539923
L s371m 1.667887 0.337854 0.713869
W= | g asmor | — X=[0337854 1539923 0073522 . (68)
' 0.713869 0.073522 1.537122
0.147045
| 1.427738 |

Table 5 shows the relative residual norm (R® R®)/(R® R®) for each iteration step of the algorithm
given in Table 3 (column a) and Table 4 (column b). Furthermore, it presents the relative residual norm
obtained from the algorithm given in Table 3 but using the symmetrized mixed-variant matrix represen-
tation

% ({ox exp[XW]7} + ox exp[X W]} (69)

instead of {3y exp[X]’} (column ¢) and the use of the covariant representation of dx exp[X*)] with the
update for X as given in Table 3 (column d of Table 5).

The results demonstrate that both representations given in Tables 3 and 4, respectively, are equivalent
and obtain the solution at a quadratic rate of asymptotic convergence. Using the symmetrized mixed-
variant matrix representation (69) causes divergence of the iterative procedure. Using the (symmetric)
covariant representation {Ox exp[X(]‘)]ab} within the sequence given in Table 3, i.e. an inconsistent repre-
sentation of the algorithm given in Table 2, causes loss of the quadratic rate of asymptotic convergence.

4. Conclusions

The discussion of the proposed six-dimensional vector space and its metric enabled a simple explanation
of various types of vector and matrix representations of symmetric second-order and fourth-order tensors,
respectively, as covariant, contravariant or mixed-variant coordinates in this space. We have proven that all
of the mentioned representations enable the full and unique reconstruction of the symmetric tensors in R*.
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We further demonstrated that even though the tensors in . and %" as well as in  and 7 * are uniquely
connected, the integrity basis for tensors in & and 7 * reproduces only a subset of the integrity basis found
for tensors in & and 7, respectively.

Special effort has been made with the discussion of ortho-normal coordinates in R*. Such coordinate
systems are used in many applications of the FEM or BEM. In an ortho-normal coordinate system the
covariant and contravariant coordinates are identical in R’. Investigating the metric of the related six-
dimensional representation pointed out that, even in that particular case, the matrix representation is re-
lated to a generally not normalized vector space. Thus, we could show the need for covariant, contravariant
and mixed-variant coordinates for all matrix representations of tensorial equations. A set of example ap-
plications on commonly used second-order and fourth-order tensors demonstrated the application of the
proposed framework.

It has been shown that the presented clarification of the mathematical structure of the com-
pressed matrix representation yields a simple framework for the transition of symmetric second-order and
fourth-order tensors to the corresponding vector (6 x 1 matrix) and 6 x 6 matrix representations. A
compact summary of the transition formulas has been given in the paper. These formulas are not restricted
to any special coordinate system but include all types of non-normalized, skew and curvilinear coordinate
systems.

Table 6
Eigenvector basis of a tensor X and derivative of the second-order tensor function exp [X] with respect to X derived from the formulas
given by Miehe [10]

Invariants:
1
Li=tX, =3 [(trX)* —trX?], L =detXeR 1)
Principal values: these are obtained as roots of the characteristic polynomial

RN =L+l =0 = {Jy, 00} (1)

For what follows, we define /4, = 4, and 15 = 4.
Eigenvector bases:

Dx = (/L% - )~x+l)(;“7, - )~1+2) (III)

m=m :DL[X—(II N+ L)X ey (Iv)

Computation of exp [X]:

exp[X] = i:exp[/lx]rﬁ ey V)

Derivative of exp [X] with respect to X

3
OxexpX] =al — by + Y dmeme T (VI)
a=1
with
a 23: p exp(ig) (VII)
=" L exp(iy
= Do
|
b=1 ZD—exp(iﬁ) (VIII)
=1k
3 )./; -1 2772
dy = exp(/y) + ZD—exp(Z,;)[lgi.ﬁ — A (IX)

and the fourth-order tensor -1 defined as

1 _ _ _ _
{h by =5 (20 + X x) (X)

i
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Appendix A. Computation of exp[X| and Oxexp[X]

An e1lrbi2tre13ry tensor X € & can be expressed by means of its eigenvalues 4;, 4, and /3 and the eigenvector
basis {m,m,m} as X = Zizl A.m. The eigenvalues are obtained as the roots of the third-order characteristic
polynomial by means of a direct formula given by Malvern [2]. The definition of the eigenvector basis
{m}, o = 1,2,3 and an alternative formula for the efficient computation of exp[X] has been explained by
Miehe [10]. The derivative Ox exp[X] used in Section 3.4 is defined by means of the directional derivative as
follows:

d
D, expX] := i expX +eg] =0xexpX]:np Vnpe&. (A.1)

e=0

For a detailed explanation and derivation see [10] and references therein. A summary of required formulas
is given in Table 6.
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