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Abstract

Both x-ray tomography and neutron tomography give very detailed insight in
the microstructure of concrete. However, their different contrasts, due to dif-
ferent compositional sensitivities, make one modality more relevant for some
features. The present study shows that both types of images acquired on the
same specimen may be registered onto each other, after the statistical joint dis-
tribution of absorption coefficients has been learned. A Gaussian mixture model
has been used to identify up to five different phases having different signatures.
A staggered algorithm consisting in i) adjusting the joint histogram to fit phases
and their variances and ii) registering the two 3D images onto each other, within
a multi-scale algorithm is presented in details. The analysed experimental data
illustrates the benefit of using jointly both modalities as compared to their par-
allel usage.

Keywords: Concrete microstructure, X-ray computed tomography, Neutron

tomography, Digital volume correlation, Multimodal imaging

L Author to whom correspondence should be addressed,
emmanuel.roubin@3sr-grenoble.fr.

Preprint submitted to Cement and Concrete Research May 31, 2019



20

25

30

1. Introduction

Concrete is a multiphase 3D material. It is now widely recognised that
important mechanisms such as failure or fluid percolation reflect this hetero-
geneity and play out at the meso-scale, where the phases can be identified as
aggregates and pores embedded within a mortar matrix. A correct description
of the material morphology at this scale is therefore crucial for elucidating these
mechanisms. Furthermore, the increasing descriptive power of meso-models
i.e., which explicitly take the morphology into account, [1] or morphological
models [2] requires the injection of increasingly accurate physical information.

X-ray tomography allows a non destructive access to a 3D field (x-ray at-
tenuation coefficient) at the scale of interest. Due to the large difference in
contrast, pores can easily be identified, however, the x-ray attenuation coeffi-
cients of aggregates and cement paste are normally very close, making it difficult
to distinguish them from each other but not impossible, see [3, 4], as shown in
Figure 1, left. Furthermore x-rays are not sensitive to water, a key ingredient
of concrete-like materials.

Neutrons interact differently with matter which means that neutron and
x-ray attenuation coefficients can be very different for the same material. A
striking example is that neutrons are sensitive to water which allows both of
the x-ray’s limitations to be tackled — however with a limitation on the spa-
tial resolution. The presence and movement of water (of more generally fluids)
within concrete is of major interest for the mechanical behaviour of concrete
under high stresses [5, 6, 7], for speed of chemical degradation [8], for resistance
to fire [9] as well as for its quality as a material for containment [10, 11]. A
number of studies have been carried out on concrete using neutron radiogra-
phy, allowing water infiltration to be measured with ease. In the context of
tomography on concrete, the sensitivity to water leads to a different field for
the phase description, as shown in Figure 1, right. Ref. [12] presents an excellent
example of the interest of neutron tomography for concrete, where the loss of

water during a simulated fire can easily be quantified. Furthermore, the isotope
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sensitivity of neutrons allows flow paths to be measured in saturated conditions
such as in Ref. [13], which incidentally is the source of the data that will be

studied herein.

(a) 150kV Lab X-ray Tomography (b) Cold Neutron Tomography
X-ray attenuation field f (g) Neutron attenuation field f,(x)

Visualised range (d) Visualised range

In(p(fx))
In(p(fu))

fx Ja

0

0 1
Air Cement |
Aggregates Aggregates

Air

Cement

Figure 1: Figure adapted from [13].The top row presents the similar horizontal slices of the
sample studied coming from reconstruction of x-ray (a) and neutron (b) tomographies. Please
note that for compatibility with a white background in print, the colour map has been inverted
compared to the conventional for reconstructed volumes, such that low attenuation is white
and high attenuation is black. Furthermore attenuation values for both fields have been scaled
and offset to fit in the [0, 1] range. The field of x-ray attenuation is called fx and the neutrons
fn. They are both defined over a Cartesian coordinate system . The bottom row (c) and
(d) presents the corresponding natural logarithm histogram In(p) of the two fields calculated

inside the specimen.

The authors believe that the combination of x-ray and neutron tomogra-

phy provides an extremely valuable tool for the study of numerous meso-scale
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mechanisms in concrete. In fact, in recent years, a number of neutron centres
offer coupled x-ray and neutron tomography [14, 15, 16, 17], providing comple-
mentary fields of attenuation. A better description of the phases of concrete
can thus be obtained by combining both fields on the condition that they are
spatially commensurable (i.e., with a common coordinate system). Indeed, due
to a number of uncontrollable variables (mechanical noise, small variations in
the source, etc.) after separate reconstruction, the two resulting fields will not
be perfectly aligned. One might think that alignment by eye using recognisable
morphological features (such as the top right external pore in Figure 1) would
yield sufficient well aligned image, but experience shows that, even with a rigid
body motion constraint, 3D rotations are very hard to gauge. A change of pixel
size between the two images leads to even more complex transformations (non
rigid-body motion) that render alignment even more difficult.

This article presents the technical details of the algorithm proposed in [18]
and applies it to neutron and x-ray tomographies of concrete (those shown in
Figure 1). This yields a registered neutron image that matches the x-ray im-
age with subpixel accuracy. This procedure can be seen as a generalisation of a
classical DVC registration [19] to fields obtained with multiple modes of acquisi-
tion (i.e., multimodal registration). The final result is therefore a 3 dimensional
vector-valued “image” containing two attenuation coefficients. In this paper, we
use the “Gaussian Mixture” representation of the different phases which, as a

bonus, naturally provides an identification of the phases [20].

2. X-ray and neutron image of concrete

2.1. Description of data

Figure 1 shows two horizontal slices from tomographies of the same sam-
ple — which has been prepared with heavy water (D20) to facilitate neutron
penetration.

The x-ray attenuation field — which is closely related to material density

— presents three different phases. Voids (filled with air or D20O) have a very
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different value (white) from that of the solid phase and are thus easily identifi-
able. The aggregate and the mortar matrix can easily be distinguished by eye,
more because of their texture than due to contrast since the values (black) are
very close. The neutron attenuation field — which does not track density — has
different contrast between the phases which clearly discriminates the aggregates
from the matrix. The spatial disposition of the aggregates in both images is in
rough agreement since they have been aligned by eye.

In the following, the value of the x-ray attenuation field at 3D spatial posi-
tion = (z,9,2) " is noted f,(x) (f for short). The neutron attenuation field
is referred to as f,. It is important to note that in this case, these fields come
from the reconstruction of attenuation measurements made with polychromatic
beams meaning that the resulting field represents a frequency-lumped attenu-
ation coefficient which introduces a certain degree of arbitrariness in the field.
In the grey level fitting that follows, beam hardening is likely to have a strong
adverse effect. Both fields are normalised so that they take values in [0, 1]. For
convenience, vector notation referring to the same spatial position in both x-ray
and neutron attenuation fields ¢ = (fx, fu) " is used.

For each image, a histogram of grey levels can be computed showing the
probability distribution p of grey levels — distribution of p(fx) or p(fy) inside
the Region Of Interest (ROT) — corresponding to attenuation fields. In Figure 1,
the two histograms show peaks corresponding to the phases mentioned above.
A very rough approximation of the mean values of the attenuation fields for each
phase can be obtained by taking an average over a small area wholly within the

phase (see Table 1).

2.2. Joint histogram

Since both images have the same format and have been put roughly in co-
incidence, a joint histogram of p(¢) can therefore be computed over the ROI
collecting the fy and f,, values at the same pixel location. Both grey levels are
discretised into a number np;,s of grey level intervals (called bins), so that p is

discretised to a npins X Npins Matrix denoted [p).
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Table 1: Approximate mean values pux and pn of fx and f, for the three main phases identified.
It is important to note that these values have been offset and rescaled, and are therefore

expressed in arbitrary units.

X-ray attenuation Neutron attenuation
() (n)
Aggregates 0.77 0.48
Voids 0.12 0.18
Mortar 0.72 0.68

Applied to the images above, and taking the inside of the specimen as ROI,
the two-dimensional joint histogram [p] is shown in Figure 2. Because registering
the circular cross section is easily done, and as is apparent in Figure 1, the main
source of misalignment appears to be a rotation whose axis is normal to the
plane of the slices presented. Given both the size and the volume fraction of the
aggregates in the material, even for this relatively severe misalignment, some
x point to aggregates in both images or mortar in both images. This leads to
two high spots in Figure 2 (left) that represent the ¢ = (fx, fu) " couplets for
aggregates and for the mortar matrix, at approximately the values in Table 1.
However, due to misalignment, many a« will point to different phases, which
spreads out the peaks. A clear example is the absence of a peak for voids, which,
due to their small sizes almost never share a common x. Indeed, the zone around

« ~ 0.1 and f, € [0.45,0.8] corresponds to voids in the x-ray intersecting with
solids in the neutron image. Similarly, the zone around f, ~ 0.2 and fx ~ 0.7
corresponds to voids in the neutrons intersecting with the (similarly-valued)
solids in the x-ray image. The absence of peak for f, ~ 0.1 and f, ~ 0.2 is
simply the result of a misalignment of the two images.

An approximate (estimated by eye) initial guess of a —15° rotation is applied
to the f, field to increase spatial coherence, yielding the joint histogram in
Figure 2 (right). The intensity of the peaks for aggregates and mortar are not

significantly improved, but the appearance of a peak corresponding to voids is
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Figure 2: Joint histogram of the two normalised 3D fields presented in Figure 1 which has

been computed considering the inside of the specimen as the ROI

a sign of better alignment (a misalignment smaller than the size of the biggest
voids).

The lack of separation between the mortar and aggregate peaks is probably
due to fact that the sand particles embedded in the mortar are not yet well
aligned, due to their small size. It is of clear interest to be able to quantify the
similarity between two images. Equation (15) in [18] presents a way in which
this can be quantified by a scalar £ (referred to as likelihood) defined (when

correlation is ignored) by

£x 1 slele) 1)

xcROI

In practice, the discrete version of p, i.e., the binned joint histogram, [p], is
used to compute £. The logarithm of this quantity [Equation (16) in Ref. 18]

“assumes a convenient form” in that it turns the product into a simple sum

In(L) = Z In (p(e(x))) + constant (2)

#EROLI
Incidentally, this explains the choice of the logarithm of counts in the joint
histogram plotted in Figure 2. Applied to the left image (with constant = 0)
this yields a value of approximately 33600 (arb. units) where with the initial
guess of —15° this improves to approximately 34900 (arb. units).
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At this point, let us emphasise a subtlety: p is known only when the two
images are exactly registered. Otherwise, the joint histogram being approxima-
tive, the likelihood is erroneous. However, because of the spatial correlations
in the real microstructure, the error in £ is limited, and it will be shown in
the following section 3, that even using an imperfect likelihood, one may better
register images and thus gain access to a more accurate joint distribution, and

hence a better L.

2.3. Fitting the joint histogram

With the objective of obtaining a better alignment between the two images,
an image correlation method will be developed in the next section. Regular
image correlation cannot be applied directly in this context due to the incon-
sistency of the values of the fields fy and f,. Fitting the relevant peaks of the
joint histogram will allow any pair of values ¢ = (fy, fu) ' to be assigned to a
given fitted peak and therefore a phase.

Let us consider Nphase phases, each characterised by a bivariate Gaussian
distribution, p;(¢) for phase i, where bivariate refers to the two 3D measure-
ments of their absorption coefficient for x-rays and neutrons, gathered into a
vector ¢ = (fy, fu) . In other words, p; represents the probability distribution
of possible pairs of grey values knowing that, at this specific point, the material
phase is i. As a probability distribution, its sum over all possible ¢ is 1. Each
)T

phase ¢ has a corresponding mean vector p; = (ux, tin) ', and covariance matrix

C, such that the probability distribution for ¢ within this phase ¢ is

pi(p) exp (—(1/2)(¢ — pi) T (C) e — Hi)) (3)

1
" 27det(Cy)
The 4 individual probability maps for each phase can be combined in order to
give the probability of measuring a given ¢. In order to do this, the probability
maps for each phase need to be weighted, and this is done by the relative
quantities in the material being studied, i.e., the weights to use are naturally

the volume fractions of each phase. Introducing ¢; the volume fraction of phase
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i, the probability to measure a specific ¢, is therefore

Nphase

p(p) = Z aipi (), (4)

whose sum is again 1 over all possible ¢, due to the weighting by each phases’
volume fraction ¢;. Although volume fractions are an initial microstructural
measurement of interest, without an initial segmentation these cannot be ob-
tained accurately, but they can be computed from the fitting of each phase.

With ¢; as the height of the peak in p(¢) for each phase 4

The inverse covariance matrix for each Gaussian distribution is parametrised by
(C)~' = (6)

Thus, each phase requires four parameters (¢;, a;, b;, ¢;) to be defined.
The presence of Gaussian distributions in the joint histogram can have dif-

ferent origins:

e Uncorrelated Gaussian noise in each measurement of uniform x-ray and

neutron attenuation fields (implying in that case b; = 0).

e A real Gaussian distribution of x-ray and neutron attenuation fields due
to some properties of the material phases (such as a compositional ran-

domness at a lower scale than resolved with the voxels).

However, even if there is no justification from basic principles that the dis-
tribution should assume a Gaussian mixture form, it should also be noted that
if enough phases are taken into account, such a description is not restrictive.
Moreover, this assumption is very convenient mathematically (see appendix).

The fit is performed on the discrete (binned) joint histogram [p], the position
(tix, pin) and value ¢ of the peaks come from a maxima finder, leaving just

C; (or a;, b; and ¢;) as free variables (see Algorithm 1). Setting a minimum
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distance between fitted peaks is a good way of avoiding spurious peaks in [p)].
Furthermore, a convenient sanity check for the fitted peaks is the positiveness
of the matrix C; (meaning that both determinant and trace should be positive,
or equivalently that the two eigenvalues of C; are positive) which indicates that

the fitted Gaussian represents indeed a maximum.

Algorithm 1 Gaussian fitting

Compute joint histogram

Select number of phases Nphases

for k in [1..Nphases] do
Find the position of the highest maxima p;
Select a neighbourhood of p;
Fit the joint histogram in this neighbourhood as a second-order polynomial
Sanity check that the polynomial has a positive curvature tensor
Subtract off the fitted Gaussian from the joint distribution
(or cut-out region based on the probability value ¢;p;)

end for

In this particular case, only two peaks are selected for fitting since despite
the appearance of a (void, void) peak, the third highest peak is still due to a
misalignment of voids. Table 2 gives the values found by the Gaussian fit for
the histogram shown in Figure 2 (right), and Figure 3(a) shows the result of the
Gaussian fit of these two peaks.

It can be noted from Table 2, that since b is small compared to a and ¢, it can
be deduced that the correlation between x-ray and neutron attenuation fields
is also small. This is particularly the case for the mortar which is consistent
with an uncorrelated random noise as being at the origin of a Gaussian distribu-
tion. This may be less true for the aggregates indicating some minor correlation
between the two attenuation coefficients. In any case, imposing b = 0 in the
correlation matrix in the algorithm for both distributions neither improves nor

degrades the quality of the registration.

10
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Figure 3: (a): Fit of the joint histogram with two Gaussians corresponding to aggregates and
mortar (see Figure 2, right). The value shown for each fx and fn is the maximum of both

fits. (b-d): phase map for different voxel coverage.

2.4. Phase identification

It is reminded here that every (g; weighted) Gaussian in [p] represents a
material phase. Given at least two well-fitted Gaussians, it is of primary impor-
tance to our objective to estimate the probability 7;(¢) that a pair of greylevels
¢ belongs to phase ¢, allowing for classification.

Bayes’ rule leads to

q;Di (<P)
Nphases (7)

Zj:l qjp; ()

so that the most likely phase is simply the one that maximises ¢;p;(¢) among

mi(p) =

all phases 7. Thus, in the coordinate system of the joint histogram ¢, a phase

11
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Table 2: Table of parameters for Gaussian fit of the joint histogram in Figure 2 (right) to be

compared to the approximate values in Table 1

Fit Value Phase 1 Phase 2
(Aggregates) (Mortar)
¢ (q) 0.046 (0.304) 0.025 (0.404)

Hx 0.76 0.75

Hn 0.48 0.68

a 3154.2 901.0

b 495.9 25.0

c 835.9 441.4

map () can be established by “labelling” each combination of greyvalues of
@ with the most likely phase i:

() = Argmax(r;()] = Argmax{gipi(¢)] (8)
The phase map deduced from Figure 3(a) can be seen in Figure 3(b), for all
combinations of ¢. It can be observed that every grey level pair is associated
to a phase, even those far from a peak. This can be improved by selecting a
more appropriate number of phases being fitted, which in turns requires a better
alignment of the images.

For safety, ¢ pairs in v(¢) that are far from fitted peaks can be excluded —
i.e., assigned a “non-phase”. A threshold on the minimum Mahalanobis distance
[21] of each greyscale pair to the each Gaussian fit is made, rather than a cut-off
on the probability level. This is justified by the fact that excluding ¢ values
requires the identification of unrealistic greyvalues, which should not depend
on the quantity of the detected phase. More pragmatically, it has been found
that in the presence of phases with small volume fractions (such as the voids in
this case) reasonable probability cut-offs for the more probable phases coincide
with the peak for the voids, and thus completely erase them. This threshold,

applied to the fit of a bivariate Gaussian distribution, represents a cut-off value

12
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based on the distance from the mean (the equivalent to a standard deviation
cutoff in 1D), and is independent of the fitted height. A useful metric for the
evaluation of the impact of this threshold is the quantification of the number of
retained voxel pairs (i.e., in this case being in phase 1 or 2) that we call “voxel
coverage”. Figures 3(c-d) represent two different thresholds that yield a 99%
and 98% voxel coverage.

Finally, a useful output of the fitting is the ability to obtain the spatial
distribution of the phases within the scanned specimen. This can be computed
by using the phase map to classify the phase of all the voxels in space y(x) =
().

The fitting of the phases therefore yields a mapping of the correspondences
of grey levels between modalities. This information is essential to allow the
alignment of the images to be pursued with a DVC-based image registration
technique adapted to multimodality that will be presented in the next section

and applied to the test case in the section after.

3. Multimodal registration

The multimodal registration algorithm in [18] is essentially an extension
of classical Digital Image Correlation methods, whose aim is to determine the
linear transformation operator F' (not to be confused with the greyvalue field fy)
affecting the coordinates of one modality image, say fy, so that it matches the
reference one, fy. In order to account for noise and other sources of imperfection,

a variational formulation is proposed through the minimisation of the functional
T
T(F)= ) ®(fu(®), fu(F- @) (9)

xcROI
representative of the quality of the match between the two images. To this end,

Equation 2 provides the necessary ingredients based on the joint histogram,
yielding the following definition (with a negation to ensure the function is at a

minimum at the best match)

©%(p) = —In(p(e)) (10)

13
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In Equation 4, p was proposed to be approximated by the sum of a few

Gaussian distributions, thus finally giving a ®2 potential of the form

()

—In (32, ¢s exp(—(1/2)(p — pi) T(Ci) (0 — i)

(11)
(1/2) min; [(¢ — pi) T (Cs) e — ps)) — In(¢)]

Q

where i accounts for all the fitted peaks and the minimum depends on the values
of ¢ = (fx; )

The registration algorithm itself is presented in [18, equations 5 to 14] and
developed in more detail in the appendix of this paper.

In the interests of robustness and speed, we start the registration on highly
downscaled images which allows high frequency variations to be erased and
guarantees the applicability of the Taylor expansion in the case of large dis-
placements. Registrations are repeated on progressively more detailed images,
using previously obtained transformation as initial conditions [“multiscale” ap-
proach in 18].

Images are thus low-pass filtered, and because the high frequency informa-
tion has been (temporarily) erased, it is no longer necessary to sample the image
pixel per pixel. Thus if a filter of size 2 pixels in each space dimension is used,
then the image can be downsampled by a factor 23 = 8, allowing faster and less
memory demanding data manipulation. Different types of filters may be used,
the easiest of which is known as “binning”. “N-binning” means N x N X N voxels
are averaged together. 1-binning therefore is the original image (no downscal-
ing), 2-binning halves the number of voxels in each direction, 4-binning divides
by 4 the number of voxels in each direction, etc. Usually bin levels are chosen as
a geometric series as 2! values through a recursive procedure. Once “2¢-binned”
images are registered, higher frequencies can be restored and registration can
be performed more accurately while the largest displacements are already ac-
counted for. The final step of the registration is performed with the original
images, thus without loss of information, and yet benefiting from the robustness
offered by the coarsest resolution. Alternatively a Gaussian filtering followed by

down sampling can be used following a classical Gaussian multiscale pyramidal

14
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approach. It has been found unnecessary here.

A further advantage of the multiscale pyramidal approach is that noise is
depressed as higher and higher degrees are considered. In the images shown,
4-binning or even 8-binning can be applied without loosing the coarse texture
provided by the cement paste and the aggregates. See [18] Algorithm 1 for

details.

4. Application to concrete

4.1. Initial registration

The ROI is defined as a crop of the data presented in figure 1 to avoid the
textureless background outside the specimen. This crop yields a 400% voxel
volume at full-scale (1-binning).

The data is first downscaled to 4-binning (i.e., a 100 voxel volume). To
start with, the joint histogram [p] shown on the top left of Figure 4 is computed
by applying the initial guess of —15° to f,. It is important to note the difference
with the histogram presented in Figure 2 (right) which also takes into account
the initial guess but at a different binning level. The applied binning has two
effects: it denoises the data — giving sharper peaks — and erases the small
features such as pores — peak missing at (fx, fu) = (0.1,0.2) for example. From
this histogram two maxima are identified (marked by white crosses) and two
Gaussian ellipsoids are fitted. Using these fits the phase diagram is computed
with a target voxel coverage of 99%. Avoiding pairs of values far from peaks
appears to allow slightly faster convergence of the registration. The two main
phases appeared clearly (in order of descending peak value): the mortar matrix
and the aggregates.

Over the iterations F' is updated and from it, translation and rotation are
extracted. The convergence condition is set to be ||§F| < 5.107% and 27 itera-
tions are needed to reach convergence at the 4-binning level. Figure 5 shows the
evolution of both rotation and translation and Table 3 the value at convergence

(for all scales).

15
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After convergence at this binning level, the F' operator is rescaled (transla-
tion part multiplied by 2) and used as an initial guess for 2-binning level (i.e., a
2002 voxel volume). As before, the joint histogram is computed by applying this
initial guess to f,. As shown in Figure 4, the guess is sufficiently good and the
scale is sufficiently fine to see a new peak corresponding to the pores. This new
phase is added to the list of phases to be fitted by Gaussian ellipsoids which
results in a 3 phases diagram: 1 being the aggregates, 2 the mortar matrix and
3 the pores. The registration is continued at this binning level, converging after
11 iterations to the values shown in Table 3.

As above, the previous converged F' is used as an initial guess for 1-binning
level (i.e., a 400 voxel volume). A new joint histogram is computed and the
same 3 peaks are fitted leading to the values shown in Table 3 after 16 iterations.

The difference between the joint histograms for 2-binning and 1-binning is
not mainly due to the change in F (which is small) but rather to a combination
of both decreasing partial volume effects and increasing spatial resolution.

Figure 5 reveals the significant interest in performing binning where the ma-
jority of the registration is performed at the lowest binning level and therefore
at high speed. However, the downscaled registrations seem to converge to a dif-
ferent solution than the higher scale. This is especially true for the z component
of the translation.

The registration run directly on the original images without downscaling
approach converges after 212 computationally expensive iterations (to be com-
pared to a total of 57 iterations with the multiscale approach), to a transforma-
tion which is close to that obtained with the downscaling approach (i.e., within
0.05 pixels displacement and 0.005°).

In order to visually check the commensurability of the registered fields,
checkerboard patterns mixing the two fields fy and f, are presented in Fig-
ure 6 on the full image (including the background). On the top left, the initial
guess of -15° shows the lack of similarity between the two fields. On the top
right, the result of first registration at this binning level already shows a good

correspondence, as seen above. On the next two checkerboards at finer resolu-

16
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Figure 4: Joint histograms (left) and phase maps (right) before entering registration algorithm

for each binning level

the continuity of the phases is visually satisfactory.

tions,

4.2. Final phase identification at full-scale

, the final transformation ob-

To identify the phases present in this material

tained above at the binning 1 scale with three phases is used as an initial guess

for another run of the registration approach with an increased number of phases.

295

This run is expected to converge quickly. In this case, 5 phases are selected with

17
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Figure 5: Rotation angle (top) and translation (bottom) over the cumulative iterations of the
registration over the three binning level. Translation of binning 4 and 2 are scaled to binning
1 voxel size (i.e., multiplied by 4 and 2, respectively). The inset of (a) is a magnified view of

the data contained in the dotted box.

99% coverage, as shown in Figure 7 (left). This yields the phase identification
presented in Figure 7 (right).

The aggregate and mortar phase are easily identified as phases 1 and 2,
respectively. Phase 3 corresponds to a mineralogically different aggregate (it
can be observed in Figure 1, bottom right of the slice, as having a lower X-

ray attenuation and higher neutron attenuation). This phase occupies a rather
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Table 3: Converged translation and rotation values at each binning level for axes (z,y, z).

The rotations are expressed as a rotation vector in the axis and angle format.

Translation Rotation Iterations
Binning level | [pixels @ Bin 1] [deg]
4| —2.03,-1.85,5.,50 —0.59,0.11, -19.65 27
2| —1.93,-1.84,6.12 —0.58,0.07, —19.67 11
1| —1.88,-1.85,6.42 —0.58,0.07, —19.68 16

large area in the phase diagram. This may be due to the region over which
the Gaussian peak is fitted, as unfortunately, partial volume voxels between
mortar matrix and pores often fall into this zone. This explains the nonphysical
presence of this phase around pores. The centre of large pores are well identified
as phase 4. However, it can be observed that the non phase (in white) usually is
in the vicinity of pores. Indeed, in addition to partial volume effects, artefacts
affect the reconstruction of these low attenuations more than the other phases.
Phase 5 corresponds to small, highly attenuating inclusions scattered all over
the specimen, which may be metallic in origin.

On the whole, the meso-scale morphology of concrete can be very accurately
classified thanks to the registration procedure. Let us stress that with one single
modality, it would have been impossible to identify those phases which have a

significant overlap with other ones in a single modality histogram.

5. Conclusions

This paper presents the technical details of an algorithm to researchers in
the field of concrete and cement research, an essential component of the ground-
breaking new measurement that combined neutron and x-ray tomography rep-
resents. The ability to register neutron and x-ray fields, as well as to obtain an
identification of phases, allows a number of cutting-edge research questions to

be answered — for example regarding complex hydro-mechanical phenomena in
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Figure 6: Checkerboard pattern of fx (dark) and fn (light) as per Figure 1

concrete.
The algorithm as presented here is implemented in the SPAM toolkit, an
»s open-source image analysis toolkit [22] where an example on another set of
concrete images is presented. This form of release is expected to ease and
maximise its use.
Furthermore, the technique presented here, which is ideally suited to research
on concrete, also presents some interest for materials, where the coupling of

;0 neutron and x-ray tomography is beneficial. Registrations have been successful
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Figure 7: (a): Phase map v(¢) with 99% coverage after final registration (b): and correspond-
ing identification of the phases (z) within the ROI (right). The pixels in white correspond
to the 1% of pixels in the non-phase. Phases, from bottom to top on the colour bar: Most
numerous aggregate type, Mortar matrix, Second aggregate type, Voids, and, Dense inclusions

(negligible volume fraction — possibly metallic)

on rocks (in the initial presentation of the technique [18]), bones with metallic
implants, roots growing in a moist granular material, and asphalt (all of these

a recent results soon to be published).

6. Perspectives

A number of further paths of development stem from this work. The phase
allocation for partial volume voxels could certainly be improved, providing a
better assignment to uncertain voxels. At a more ambitious level, it would
be extremely desirable to incorporate spatial correlations in the analysis, with
neighbouring pixel analysis.

A path further in the future for advanced experiments on concrete is the
development of a combined image correlation minimisation, taking into account
two fields. In the case where a neutron and x-ray scans of a reference state,
and subsequent scans of a deformed state have been acquired (and after due
application of the algorithm discussed herein) a measurement of the kinematics

that map one phase into the next would be extremely valuable to exploit the
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highly complementary information provided. It may also offer new opportuni-
ties, such as speeding up neutron tomography, which would imply to deal with a
higher amount of noise. However, because x-ray tomography would be performed
simultaneously, a prior guess of “neutron contrast” image can be proposed to a
neutron tomographic reconstruction algorithm leading to a much more robust
and noise-tolerant tool. In a similar spirit, these two modalities can also be used

with different spatial resolution, allowing the finer one to inform the coarser one.
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Appendix A. Registration algorithm

Appendiz A.1. Multi-modal registration

It is reminded here that the goal of the registration algorithm is the find the
best transformation F' that deforms f, to minimise 7. To do so an iterative
approach is adopted which involves a progressive correction of an initial F' by

0F. The correction at iteration (n + 1) is
FOrD) — ([ 4 sFp D)y p™) (A1)
The small quantity 6 F invites a first order Taylor expansion of fn(F("+1) -x):
fn(F("'H) ) = fn(F(") L) + an(F(") ) - SFY . pn) 4 (A.2)

This equation is made more compact by introducing (™ = F . x, and the

corrected image f;(n) (x) = fu(x(™) with the current transformation so that

FaFOD ) = 7 @) £ VP (@) sFOHD L g (A.3)

For the same reason, ®? is expanded to the second order, with respect to

the f, above. This yields the functional:

T (F<n+1>) -3

xcROI

*(fu(@), fu (x))

- )
0P (@), fu (@) (an(@(m) S .w<n>)

9 fa
= (n) 2
182(D2 fx ;fn = (n) n n
= ( (g}g (z)) (an (@) - SF D . g >> ]

(A.4)

The unknown is § F. The minimum of the functional 7 (and not necessarily
a zero) is looked for, and hence we solve for 0 F' where its derivative is zero. The

ws derivative of Equation A.4 yields:
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Solving for the zero-point of this derivative naturally leads to the following
system
MMSFT+D = A (A.6)
where

= (n)
A — Z 00*(fxs fn ) (Vf:l(n) ®x(n)>

Ofn
x€ROI (A?)

= (n)

2
xcROI afn

Equation A.6 is now developed for the potential function ®2 defined in the
case of joint histogram fitted by bivariate Gaussian distributions. Deriving ®2

in Equation A.7 gives

2
W :b(fx - /ffx) + C(fn - /ffn)

P (fx, fo) _
ofz

where b, ¢, tix, ptn are those associated with the phase selected by ¢ in the phase

(A.8)

map (where each pixel is “labelled” with the most likely phase) and thus depend
on each voxel position x. In the interest of computational time, this composition
map is computed in advance, and corrected when registration and phase fitting
w0 are estimated. This corresponds to a pre-calculation of what is presented in the
voxel coverage maps in Figure 3. It is important to note that the voxel pairs

falling into the non-phaseare simply excluded from the ROI.
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Appendiz A.2. Note on same-modality DVC

With images acquired with the same modality, the joint histogram will be
essentially aligned along the fy = f, diagonal line of [p]. This can be described
as a single bivariate Gaussian distribution with parameters a = 1, b = —1 and
¢ = 1, which aligns it along the diagonal. Inserted into Equation A.7, this
yields the classical DVC operators A and M as obtained with the potential for
same-modality DVC

1 2

(1)2(90) =35 (fx - fn)

- (A.9)

This can be seen as a relaxation of classical DVC, and may present, for
example a convenient way to take into account global changes of grey levels

within the same modality.
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