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Abstract Local and global approaches to digital image correlation are compared when
the displacement interpolation is based upon bilinear shape functions (i.e., with four-
node quadrilaterals). The resolution in terms of displacements and strains associated
with both techniques are evaluated a priori and validated a posterior:i by using series
of images of real experiments. It is shown that global approaches generally out-perform

a local approach.

Keywords 4-noded quadrilaterals - Displacement - Full-field measurements -

Resolution - Standard uncertainty - Strain.

1 Introduction

Digital image correlation (DIC) is a popular technique to measure 2D and 3D displace-
ment fields [1-3]. In its 2D version, DIC consists in registering two images by measuring
the displacement field that enables for the best match. Generally, planar surfaces nor-
mal to the optical axis are observed to minimize perspective distortions, and non-rigid

image registration is sought for. A random pattern is often applied on the observed
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surface, or the natural surface texture and markings are exploited to measure the dis-
placement field based on the assumption that the surface texture passively follows the
displacement of the analyzed solid. DIC, which is used in solid mechanics, is equiv-
alent to Particle Image Velocimetry (PIV) utilized in fluid mechanics. DIC [4-7] was
initiated a few years later than PIV [8-12]. However, because the sought displacement
and strain resolutions were smaller than the velocity resolutions, its development was
slower; algorithmic challenges being more difficult to address. However, the technique
has reached centipixel standard resolutions and uncertainties [13-16], and millipixel
biases or less [17,14,2,16] that are compatible with a large variety of cases encountered

in solid mechanics [1-3].

In its original developments, the registration was performed on zones of interest
(ZOIs) that are small windows of the considered region of interest. This type of ap-
proach will be referred to as local. The early developments were based on pure trans-
lations that were sought either in the physical space [4-6] or in Fourier space [18-20].
The kinematic hypotheses were changed later on to account for warping of the ZOI
and first order interpolations were implemented [7,21]. Higher degree interpolations
are also used [15] but in all the cases, the only information that is kept is the mean

displacement of each ZOI.

In computer vision, very early on, alternative techniques were implemented. They
are based upon variational formulations (as one would use in solid mechanics when
resorting to, say, finite element formulations [22]). In the work of Horn and Schunck,
a spatial regularization was introduced to reduce the displacement fluctuations [23].
However, in cases in which discontinuities are expected, the previous approach is not
appropriate per se [24]. “Smoother” penalizations based on robust statistics were imple-
mented [25,26]. Another way of regularizing the registration is to enforce directly, say,
continuity or even more so that no choice is left concerning the weighting associated
with the regularization term. Various displacements fields were studied, namely, lin-

ear [27], Fourier expansions [27,28], B-spline [29,30], elastic solutions (closed-form [31,



32| and numerical [33,34]). In all these cases, because the registration is performed

over the whole region of interest (ROI), it will be referred to as global approach.

It is also possible to use the same interpolations as those used in local approaches.
In that case, there is a need for discretization schemes and the finite element method
is the most suited one. In computer vision, this type of approach was developed in
the 1990s [35]. Finite-element based global approaches were introduced in the mid-
2000s in solid mechanics. Either the correlation product [37] or the sum of squared
differences [36,14] were used as the minimization quantity. 4-noded bilinear elements
are the most logical choice for comparison purposes. They will be used herein in addition
to mesh adaption to allow for better resolutions of nodal displacements in the whole
ROL. It is worth noting that unstructured meshes could also be used [33]. However,

there are very few, if any, local approaches that use such types of discretizations.

The aim of the paper is to compare local and global approaches. For local as
for global approaches, different matching algorithms are used [15,36,37,14]. To make
the comparison objective, the same algorithms should be used in terms of gray level
interpolation, kinematic interpolation, and minimization procedure. It will be the case
hereafter. The paper is organized as follows. First, the principles of local and global
approaches will be presented when the sum of squared differences is minimized to
evaluate the sought displacements. The sensitivity to acquisition noise is discussed in
terms of the uncertainty levels of nodal displacements, mean displacements and mean
strains per ZOI or element. Theoretical predictions are compared with an a prior:
resolution analysis. A first practical example deals with a series of pictures taken with
a CCD camera during a biaxial test on a thin film. A couple of pictures acquired in a

scanning electron microscope (SEM) are analyzed as a second example.



2 Local and global approaches to DIC
2.1 Correlation procedure

There are various ways of registering 2D pictures. Among them, the most popular in
local approaches is related to the correlation product [2]. An alternative approach is
given by the sum of squared differences. The latter was used by the authors when
implementing global approaches in the context of finite element discretizations [14,
32-34]. It will be used for both techniques in the sequel.

Let us consider f the picture of the reference configuration, and g that in the
deformed configuration. Those two images capture the speckle pattern of the solid
surface that is assumed to be passively advected by the supporting solid. The gray

level conservation at any pixel location x then reads

fx) = g(x+u(x)) (1)

where u is the displacement vector. Because the conservation law is never strictly
satisfied due to acquisition noise and the number of unknowns exceed the number of
equations, it is not possible to determine the displacement vector u from the sole pic-
tures f and g. The correlation procedure has therefore to be written on a given domain
that contains more than 1 pixel. Thus a correlation procedure aims, for instance, at

minimizing the sum of squared differences
7= [ (769 gl + ui))?ax )

over the considered domain (2 (i.e., a ZOI in a local approach, and a ROI in a global

approach) in which the displacement field is interpolated as

u(x) =Y unthn(x) (3)

where 1y, are (chosen) vector functions, and un the associated degrees of freedom. The
measurement problem then consists in minimizing 7 with respect to the unknowns wun.

Let us note that choosing nodal displacements is a convenient way to emphasize the



similarities and differences between local and global approaches. However, the tradi-
tional parametrization used in local approaches is equivalent but different. The center
point displacement being the key quantity of interest it is singled out, and other degrees
of freedom correspond to a first order polynomial expansion about the center.

A Newton iterative procedure is followed to circumvent the nonlinear aspect of the
minimization problem. Let u’ denote the displacement at iteration 4, and {u}’ the
vector containing all the unknown degrees of freedom. By assuming small increments
du = u'*! — u’ of the solution, a Taylor expansion is used to linearize g(x + v(x)) ~

g(x) + v(x) - Vg(x) =~ g(x) + v(x) - Vf(x) and then, 3T /8{u}’ is recast in a matrix-

vector product as

oT i

5ty = MI{du} - (b} = (0} (4)

with
My = / [V 1(%) - e (][ S (%) - o (x) ] (5)

(9]

bl = /Q () = 5 ]V F(x) - ()} (6)

and
7 () = g(x + ' (x)) (7)

It is worth noting that matrix [M] is computed once for all, and only vector {b} is
updated from one iteration to the next. This choice (other alternatives are possible [14])
is only dictated by computational efficiency. The iterations stop when the displacement
corrections {du} reach a small level that is chosen by the user. In many situations, the
initial value is {u}’ = {0}, but there are other propositions [30,38].

To evaluate the resolution' of the developed technique, since the un-noised reference
is not known, the noise is assigned to the deformed picture with a variance 202, where

2

o“ is the variance of Gaussian white noise [32]. Under this assumption, the covariance

matrix [C] simply reduces to [14,32]

[C] = 20°p*[K] (8)

1 The resolution of a measuring system is the ‘smallest change in a quantity being measured

that causes a perceptible change in the corresponding indication’ [39].



with [K] = [M] ™!, and p the physical size of one pixel. This result is very general.
Similarly, it can be shown that when the noise level remains small, the estimate of u

is unbiased.

2.2 Local approach

In the present setting, a local approach to DIC comnsists in minimizing the sum of
squared differences

T = (f(x) = glx +u(x)])? dx (9)
701

over the considered ZOI. At this level of generality, many choices can be made for
the displacement in each ZOI. In the following, shape functions used in finite element
formulations are chosen. It is worth noting that the connectivity between elements is
not yet enforced in this part. Since pictures are sampled in pixels it is logical to use
square or rectangular ZOIs. Only regular square ZOIs will be considered herein. Their
size is denoted by ¢. The separation between ZOIs can be chosen, namely, it can be
equal to £ (i.e., contiguous ZOIs), less than £ (i.e., overlapping ZOIs), or greater than ¢
(i.e., separate ZOIs). To compare with finite element calculations, contiguous ZOIs will
be used in the sequel. The simplest interpolation to consider is bilinear (i.e., 1, z,y, xy
functions, where = and y denote the local coordinates of any point M (z,y) belonging
to a given ZOI). Each component of the displacement field is treated the same way
(i.e., only scalar functions Ny (x) are considered) so that the displacement u®(x) in

each ZOI (2 reads

Ne

u’(x) = Y D aanNn(x)ea (10)
n=1 «

where ne denotes the number of nodes (here ne = 4), eq the unit vector associated with
direction o = 1,2, and a$, the unknown nodal displacements. Elementary matrices

[M?] whose components read

€ on = / Do () N ()95 £ () N () (11)

e

and elementary vectors {b®}

Do — / [F(0) — §()] B () Nom ()l (12)



where 0o f = V f - eq, and § the corrected image, are computed for each ZOI. Matrix
[MF?] is symmetric, positive, and definite (when invertible). Contrary to classical FE
procedures, quadrature formulas are not used because of the irregularity of the picture
texture. Instead, a pixel summation is implemented [14]. For each ZOI, an 8 x 8 linear

system is solved iteratively

[M°]{da’} = {b°}' (13)
where vector {a®} collects all sought degrees of freedom ag,. The resolution analysis of
Section 2.1 is applied to the kinematics chosen in this part. For each degree of freedom

agm, the standard variation oqe, reads

v

Oae, = \/Eap\/Kgmam (14)

with [K¢] = [M¢]~!. This result shows that depending on the underlying texture, and
more precisely its gradient, the resolution of the correlation technique is not necessarily
uniform over the whole ROL

Let us assume that the correlation length of the texture is greater than a few pixels
and less than the ZOI size £. In such a case, a “mean-field” assumption is used, namely,
the squared image gradient that appears in the expression of [M°] (Equation (11)) is

extracted from the integral and changed into its expectation value

(e fO5f) = GFoap (15)

where Gy is the square mean of the image gradient projected along any direction. Note
that here the image texture is assumed to be isotropic. This mean-field assumption is
expected to hold for large ZOI sizes, but it may break down for small ones. Under such

circumstances, sub-matrix Mg, 5 reads

4 2 2 1
., G 2 4 1 2

[ a,B] X Wtsaﬁ (16)
2 1 4 2




Consequently, the covariance matrix associated with the measured degrees of freedom

reads

[Capl ¢ ST 5.5 (17)

1 -2 -2 4

The covariance matrix for the degrees of freedom is simply related to the inverse of
[M]. Thus there exists a basis where both [M®] and [C] are diagonal. The spectrum
of eigenvalues and eigenmodes allows for a simple interpretation of noise sensitivity. In
a local approach, the four eigenvalues of [Mg,,] are G?:Kz(l/él7 1/12,1/12,1/36). The
largest eigenvalue corresponds to a uniform translation. The second eigenvalue, which
is twice degenerate and three times smaller than the first one, corresponds to a uniform
gradient along x and y. Finally, the fourth eigenvalue is a field whose nodal value is
proportional to {1,—1,—1,1}, and as it is orthogonal to the three other eigenmodes,
it corresponds to a deformation mode with zero translation and zero mean strain.
However, it is nine times smaller than the major one. Thus noise has a much more
pronounced effect on the latter one.

An estimate o4 of the standard displacement resolution of each degree of freedom

is given by

- _4ﬂap
RERY;

(18)

For any quantity of interest, which is linear in the displacement ¢ = 3. k;a;, or

¢ = {k}{a}, its standard uncertainty reads

70 = (tm)'C1t1) (19

where k; are known coefficients collected in vector {«}. This general formula can be
used to evaluate the mean displacement uncertainty, the strain uncertainty, but also
holds for more complex linear forms such as stress intensity factors (based on interaction
integrals [40,41]), or simply mean strain evaluated over arbitrary shaped and sized

domains.



For any point x within a ZOI, the displacement can be evaluated from the different
shape functions, see Equation (10). Consequently, Equation (19) can be used to map
out the uncertainty of oy (x). The shape of the uncertainty function has a minimum at
the centre and a maximum value at the mesh nodes. The map is shown in Figure 1(a).
Consequences of this observation are that if one single information is to be kept from
the local analysis then the center value is the most reliable one. The displacement at

the center of ZOI reads
_ 1
u = 1 Z aZm (20)
m=1,4

and the corresponding standard deviation

O = \/EUP Z Z K&man = Ja (21)

4
m=1,4n=1,4

To evaluate the strain field, the components of the displacement gradient V ® u®
is computed in each ZOI {2¢ by using the gradient of the shape functions
e
(Vou)x) => Y atn(VNa(x) @ea) (22)
n=1 «

The mean component per ZOI is calculated by using the divergence theorem
PV RY = / (u® ®@ n)ds (23)
082,

where n is the outward normal of any point belonging to the boundary 0f2. character-
ized by its curvilinear abscissa s. Let uq,a and uq,g denote the two components of the
displacement gradient associated with uq. The two average quantities over any ZOI

are related to the degrees of freedom ag&,, by

_ Qo4 — A3+ ago — gy — — g4 +a53 — Age — gy (24)
20p e 20p

U,

so that their corresponding standard deviations reads

rrr =0 [ i

m=1,4n=1,4

Oag = % YD (M, (25)

m=1,4n=1,4
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As a first approximation, the standard uncertainty level for the mean gradient compo-

nents og becomes

o 2\/60
G2

(26)

so that it is related to oy and o4 by

\/gaa

Usually, the mean displacement gradients are evaluated by interpolating the mean
displacements of neighboring ZOIs. In the following analysis, a set of 2 x 2 ZOIs is

considered. The mean displacement gradients become

Uqd + Ua3 — Ua2 — Ual

Uaq — U3 + U2 — Ual <ua7[—}> _ 2£p (28)

20p ’

(ua,a) =

and the corresponding uncertainty level oy becomes

o \ﬁa _ 0%
T(e) = foQ ~ (29)

where (o) denotes averages taken over 2 x 2 ZOIs.

All these results will be analyzed by using a real picture in Section 3. Figure 2
summarizes the results when a local approach is used and 10 x 10 ZOIs are considered.
By construction, the local approach yields displacement and strain uncertainties (i.e.,
0a, 0w, 0¢) that are independent of the location when the texture content (i.e., (8 f)?

is uniformly distributed over the whole ROI) and provided the ZOIs do not overlap.

2.3 Global approach

In a global approach to DIC the sum of squared differences is minimized when defined

over the whole ROI
To= [ (760 g+ u()) e (30)
ROI
In the following, the same shape functions as those chosen in the local approach will

be considered. A regular square mesh made of 4-noded elements with a bilinear inter-

polation of the displacements is constructed. The main difference with the previous
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approach is that the continuity of the displacement field between elements is satis-
fied. Each component of the displacement field satisfies Equation (10). Matrix [M] (see
Section 2.1) is assembled by considering elementary matrices [M®] whose components
are defined in Equation (11) and vector {b} is assembled by calculating elementary
vectors {b®} expressed in Equation (12). Matrix [M] is symmetric, positive, definite
(when invertible), and sparse as in any FE computation. A single global problem is
solved iteratively

[M]{du} = {b}’ (31)

where vector {b}’ is updated thanks to the picture corrections §, and vector {u} col-
lects all sought degrees of freedom. Because of connectivities between elements, the
maximum component of matrix [M] is multiplied by 4 for inner nodes when com-
pared with a local approach. Further, edge nodes and corner nodes have smaller values
compared with inner nodes since the connectivities are different.

As shown above, the spectrum of eigenvalues and eigenmodes allows for a simple
interpretation of noise sensitivity. In a global approach, and with a torus topology (in
order to avoid edge effects), matrix [M] is easily diagonalized. Translational invariance
makes it a convolution. It is thus diagonal in Fourier space, and hence all harmonic

kX are eigenmodes, where k is the wave vector. Matrix [M]/(G?c€2) extends

functions e
over second neighbors with three different values for inner nodes, 16/36, 4/36, and 1/36
respectively for diagonal, first and second neighbors.
Eigenvalues, &, are determined by applying [M] onto such Fourier modes. They
obey
(G3e%)

&= 9 (4 + 2cos(ks) + 2 cos(ky) + cos(kz) cos(ky)) (32)

with kz = ngmw/L, ky = nyn/L, and 0 < ny < L 0 < ny < L. Figure 3 shows the
magnitude of the eigenvalues as a function of the wavevector k. The largest eigenvalue,
Emaz = G?KQ, corresponds to k = 0. The corresponding eigenmode is thus a uniform
translation. As the wavelength decreases, so does the eigenvalue, and for a large system

size, a series expansion of ¢ as a function of k provides the following expression

=30 (1- (/o)) (33)
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where only the modulus of the wavenumber matters. At the other end of the spectrum,
the smallest eigenvalue corresponds to a checkerboard nodal field. In that case, k;z =
ky = m, and hence

Emin = (1/9)G?€2 (34)

The condition number of matrix [M] is thus equal to 9, provided the mean-field as-
sumption is valid. A consequence of this analysis is that when the noise level is large
(or the element size small), the nodal displacement field exhibits a checkerboard type
component that can easily be seen. Hopefully, those high frequency modes have little
impact on estimates of strain or mean displacement.

The resolution analysis of Section 2.1 is applied to the finite element implemen-
tation [32,14]. Each inner node belongs to four elements so that the shape function
associated with a given inner node spans over 4 elements. Consequently, the variance
is divided by 4, and the standard displacement resolution o, is divided by 2 when
compared with the value of a single Q4 element. However, this result does not account
for the additional requirement of continuity in the displacement field (i.e., the global
approach deals with matrix-vector system that is written on a level of the ROI). To
estimate the additional gain associated with the continuity constraint, a global matrix
is formed by assembling elementary matrices Mqaq for, say, a mesh made of 10 x 10

Q4 elements (Figure 2). For inner nodes, it is found that

o, *\/60;0
“Toa

(35)

The multiplicative factor induced by continuity is therefore equal to v/3/2. Edge nodes
are shared by two elements so that the standard displacement resolution o is divided
by v/2 when compared with its value for a single Q4 element. Again, this result does
not account for the continuity of the displacement field. When the latter is accounted

for, the following result is obtained

o — 2v/30p
“T Gyt

(36)

The multiplicative factor due to continuity is equal v/3/2 as for the previous case. Last,

corner nodes belong to one element only, and the standard displacement resolution o4
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is identical to that of a single Q4 element. By following the same procedure as above,

it is found that

. 2\/60p
- Gyt

(37)

Oa

The multiplicative factor is equal to v/3/2 in that case as well. All these results show
that there is an additional bonus associated with the continuity requirement on the
uncertainty level of the nodal displacements. If this effect is neglected, it is shown
that the same uncertainty level is reached for a global approach as for a local one,
but with a mesh that is two times finer in both directions. This can be understood
by comparing the number of unknown degrees a freedom per direction en, which is
equal to 4Nz Ny when N x Ny Q4 ZOIs are analyzed in a local approach, and (Nz +
1)(Ny + 1) when Nz x Ny Q4 elements are considered in a global approach. The
variance level is estimated as the ratio of the total number of pixels in the ROI Ly x Ly

divided by the number of unknowns. Consequently, the gain in uncertainty level is

v/ (Nz + 1)(Ny + 1)/ANz Ny ~ 1/2 when Nz, Ny >> 1 when the same Q4 discretization
is compared for a local and a global approach.

Because the number of connectivities of each node of the mesh is different (i.e.,
from 1 to 4), it leads to a standard uncertainty o, that is no longer uniform over the
whole ROI. This is also the case of oy and o¢ (Figure 2). For inner nodes, by using the

same approach as above, the following approximations are obtained for oy

0.63v/20p
og= ———— (38)
“ (e
and o¢
1.67v/20

In both cases, when normalized by the corresponding value or g, they lead to upper
bounds.

In the case of oy, it can be noted that the factor 2 when compared with a local
approach is not found. An upper bound to the ratio is equal to 0.36 (it is reached
for inner nodes). This effect can be understood by comparing the uncertainty maps

of ou(x) for both approaches (Figure 1). The shape of the uncertainty map is similar
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with a minimum at the center and a maximum value at the mesh nodes. However, it is
observed that consistently with the value reported for the nodal and center values, the
entire function for the global case lies below that of the local case. It is also observed
that the gain is much more important at the nodes, and much smaller for the average
value. However, for the global approach the same result holds albeit it may appear as
less trivial. In particular, when the displacement field is to be compared with another
such field only at discrete points it is much more advantageous to select the central
values rather than the nodal ones, while preserving the same density of points, the
uncertainty is reduced by more than a factor of 2.

Conversely, for o¢ there is a gain of 0.48. In that case, the bonus of continuity
is equal to 4 %. However, let us note that the mean strain is never calculated in
such a way for a local approach. To compare with a local approach, the displacement
gradients are evaluated by interpolating the nodal displacements 2 x 2 elements. The

mean displacement gradients become

e e e e e e
an3 — A1 + Ao — Aagq + An9 — Qa7

<u04;05> = Gfp
e e e e e e
<ua,B> _ Qa7 — Qa1 + aa86£paa2 T ang9 — a3 (40)
and the corresponding uncertainty level o) reads
\/50 _ Oa ( 4 1)

ey = W 30p
for inner nodes. Even though nodal displacements are used, a multiplication factor of
1/4/3 is obtained when the local and global approaches are compared. Had the mean
displacements of each elements been used instead, the result of Equation (29) still
applies (o) = o7/{p), so that

. 0.63v/20 _ 0Oa
9T TG T 2750 (42)

which is about 8 % higher compared to the previous case.
The use of a uniform mesh leads to a heterogeneous distribution of standard dis-
placement and strain uncertainties due to the heterogeneity of matrix [M] (see Fig-

ure 2). It is possible to make the distribution more uniform. Depending on the type
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of studied quantity, the result will be different. In the following analysis, the stan-
dard uncertainty of the nodal displacements is chosen. As a first approximation, it was
shown that o was 2 times larger for corner nodes and /2 larger for edge nodes when
compared to the value of inner nodes. Since the standard displacement uncertainty is
inversely proportional to the element size, it suffices to multiply the size of the corner
elements by a factor of 2, and edge elements then become rectangular. Figure 2 shows
the effect on the global matrix for which corner and edge nodes have components that
have the same order of magnitude than inner nodes.

Under this assumption, the fluctuation of the Gfﬁoa/ﬂa field varies between 1.73
(~ v/3) and 1.82 (Figure 2). The field of Gfécfg/\/ia then varies between 0.87 and
0.63, and the field Gf€2ag/\/§cr between 0.7 and 1.67. These fluctuations are smaller

than those observed with a regular mesh.

3 Analysis of a synthetic case

In this first analysis, an a priori resolution analysis is performed. It consists in con-
sidering a given picture f and adding Gaussian white noise with different standard
deviations to form picture g. These two pictures are correlated by DIC. In a first part,
a local analysis with Q4 ZOlIs is considered. The aim of the study is to evaluate the mea-
surement uncertainties associated with the measured degrees of freedom, the average
displacement per ZOI. The same analysis is run for the first displacement gradients.
Figure 4(a) shows the considered reference picture of the random speckle pattern.
It was obtained by spraying a black and white paint. It was used to identify damage
parameters by using a biaxial test on a vinylester matrix reinforced by a mat of E-
glass fibers [42,43]. In the present case, a 512 x 512-pixel definition is considered. The
histogram (Figure 4(b)) does not cover completely the whole 8-bit dynamic range. The
correlation radius of the texture is of the order of 3 pixels. Values of o ranging from
1 to 32 gray levels are considered in the sequel. In many practical situations, o is of
the order of 1 percent of the dynamic range for CCD or CMOS cameras. However,

other imaging systems may be used (e.g., scanning electron microscopes or atomic
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force microscopes) for which the noise level is significantly larger than that observed

for conventional cameras (see Section 5).

The first output of a correlation code to be checked is the residual field n(x) =
f(x) — g[x + u(x)] and its RMS 7 over the whole ROIL In the present case, the ZOI
separation is equal to the ZOI size so that this measure counts only once each pixel
belonging the ROI. Figure 5 shows the change of the RMS residual 7 normalized by
the dynamic range Af = maxgor f — mingor f as a function of the dimensionless
noise level v/20/Af. A linear trend is shown with a slope of 1. When the noise level
reaches very high values, there is a deviation as the number of ZOIs increases, thereby
indicating a higher sensitivity to noise, which is to be expected. Otherwise, there is an
almost 1 to 1 correspondence between the two quantities. The fact that the correlation
residual is virtually identical to the noise level is an indication that the registration was
successful. Furthermore, when the noise level is unknown, as will be shown below, it is
a simple way of assessing it by acquiring a series of pictures, performing correlations to
account for slight kinematic deviations, and assessing the RMS value of the residual,

which is equal to v/20 as a first approximation.

The result of Equation (18) is analyzed next. Figure 6(a) shows the change of o4
with the ZOI size ¢ and for different values of 0. The uncertainty level is increasing
as o increases and ¢ decreases. This trend is described by Equation (18). On a more
quantitative way, when o is divided by the noise level o, it should fall onto a single
curve that varies as 1/¢. The results of Figure 6(b) show that this dependence is
captured. A deviation is observed when only one ZOI is considered (i.e., £ = 512 pixels)
or for very small ZOIs. For large ZOls, very few points are available, making the
statistical content poor. Conversely, for small ZOI sizes, the mean field approximation
is less likely to apply as the ZOI size becomes closer to the correlation length of the
texture. On a quantitative way, it is found that fogAf/v/20p = 47 to be compared

with 4Af/G¢ = 50. This last result validates Equation (18) since o4 ~ 4v/20p/G fL.

When the mean displacement per ZOI is computed, it is expected that its uncer-

tainty level o decreases when compared with that of the measured degrees of freedom
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oq (see Equation (21)). Figure 7 shows a plot of the ratio oz/0q as a function of oq.
The average value of the ratio is found to be equal to 0.24 (to be compared with the
theoretical value of 1/4). The different data are scattered because, for small ZOIs in
particular, there are fluctuations of the mean picture gradient, and the hypothesis of

scale separation is less satisfied.

Equation (26) is now studied. The change of o¢ with the ZOI size £ and for different
values of o is shown in Figure 8(a). The uncertainty level again increases with o and
decreases with ¢ as expected from Equation (26). When o¢ is normalized by the noise
level o it falls onto a single curve that varies as 1/£2 (see Figure 8(b)). A deviation
is also present when only one ZOI is considered for the same reason as above. The
interpolation of the previous results leads to ZQUgAf/\/ﬁa ~ 39 to be compared with
2\/?:Af/Gf = 43. The value 2/3 is therefore a very good estimate of the actual ratio

oe/V200%G .

When the mean strain per ZOI is computed, it is expected that its uncertainty level
oe depends linearly on the standard uncertainty of the measured degrees of freedom
oa (see Equation (27)) and is inversely proportional to £. Figure 9 shows a plot of the
ratio og/0q as a function of 0. The average value of the ratio is found to be equal to
0.84, which is very close to the theoretical value (v/3/2 = 0.87). All the results found

in the present section validate the closed-form solutions derived in Section 2.2.

The performances of a global approach is compared with a local one in Figure 10
when the mean values of the standard uncertainties are considered for all the noise
levels. As the ZOI or element sizes decrease, the standard uncertainties o4, 07 and oe
of the global approach tend to the theoretical limits when compared with the values
of the local approach. This is due to the fact that for small elements, the proportion
of inner nodes becomes dominant. These results validate the a prior: predictions of
the standard resolution in terms of nodal displacement, mean displacement and mean

strain per ZOI or element for local and global approaches.
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4 Analysis of a series of pictures of a biaxial experiment

The series of pictures analyzed in this section were taken before starting a biaxial test
on supported thin W films. The sample was positioned in the goniometer center of
the DiffAbs experimental station at SOLEIL synchrotron source [44]. Strains using
x-ray diffraction and digital image correlation can be measured in this new setup (Fig-
ure 11(a)) The two techniques led to very similar results not only in terms of mean
strain levels but also concerning the standard strain uncertainties [45]. The optical
microscope is composed of a telecentric lens mounted on a CCD camera (12-bit dy-
namic range, definition: 1392 x 1024 pixels). This setup allows for the minimization of
out-of-plane effects since a stereoscopic equipment was not possible to implement in
the experimental environment. Figure 11(b) shows the considered reference picture. It
is the raw surface with a 512 x 512 pixel definition. Even though the quality of the
texture seems poor at first sight, the histogram (Figure 11(c)) indicates that most of
the 12-bit dynamic range is used with a slight saturation so that image acquisition is
close to optimal. The correlation radius of the texture is of the order of 3 pixels and

isotropic. Hence, the images are considered as suitable for DIC.

Values of 0 /A ranging from 1/256 to 1/32 Af are considered in the sequel. Figure 12
shows the result of the resolution analysis for a local approach. The same trends as
those observed in Figure 5 are obtained. The predictions of the a priori resolution
analysis will be compared to actual measurements. A series of ten pictures, in addition
to the reference one, was acquired. The stepping motors of the testing machine were
motionless. This is typical of an analysis that can be performed experimentally to assess
the actual resolution of the measuring system [39]. The direct DIC analysis of the 10
pictures provides the values of the RMS residual 7 in addition to the measurement
uncertainties. In the present case, 7j/Af varies between 0.008 and 0.025 (see shaded
zone in Figure 12). From this information, it is concluded that o varies between 0.5 %
and 1.8 % of the dynamic range of the camera, with an average value of 1.0 %. Figure 13
shows the change of the standard displacement and strain uncertainties as a function of

the ZOI size. The latter ones are compared with the levels predicted by the resolution
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analysis when using the bounds of 77 and the results of Figure 12. A good agreement is

obtained, thereby validating the a priori resolution analysis.

Let us now compare the measurement uncertainties of local and global approaches.
Lower uncertainty levels are to be expected with a global approach. Figure 14(a) shows
the change of the standard displacement uncertainty of the measured degrees of freedom
for both approaches. In both cases, as expected, the uncertainties increase when the
ZOI or element sizes decrease. All approaches converge toward the same value when
only one ZOI or element is considered. When 2 x 2 elements are chosen, the two global
approaches coincide since no mesh adaption was performed. As the number of elements
increases, the effect of mesh adaption is visible and a gain is observed in terms of o4
level for the same element size. The gain is even more important when compared with

the results of the local approach.

Figure 14(b) shows the change of the standard uncertainty of the average displace-
ment per ZOI (local approach) or element (global approach). Let us note that the
mean displacement is generally not an information that is given when using a global
approach. Generally, the values that are shown are the nodal displacements. Yet, for
comparison purposes, the levels of these values are compared herein. As expected from
the a priori analysis, the gain between local and global approaches is less important.
However, the global approaches still out-perform the local approach as the ZOI or

element sizes decrease.

Figure 14(c) shows the change of the standard uncertainty of the mean strain
per ZOI (local approach) or element (global approach). It is worth noting that this
information is generally not given as an output of a local approach. However, for
comparison purposes it is reported herein. As the number of ZOIs or elements increases,
the ratio of 2 between o¢ of the global approach compared with that of a local approach

is found. This is faster when mesh adaption is considered.
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5 Analysis of SEM pictures

A couple of pictures taken 30 minutes apart in an SEM is finally analyzed. They have an
8-bit digitization. A ROI of 750 x 750 pixels is extracted. This case was chosen because
of the high acquisition noise level generally associated with SEM pictures as will be
shown hereafter. In the present case, the secondary electron mode is selected with
an Everhart-Thornley detector (ETD). Because the sample surface was not textured
enough, a grid was deposited by resorting to microphotolithography (Figure 15(a)).
This type of texture leads to a bimodal histogram (Figure 15(b)) corresponding to
the grids (high gray levels) and the raw surface (low gray levels). Moreover, the whole

dynamic range of the detector is not used in the present case, but only 80 %.

When the couple of pictures is analyzed, the RMS residual 77/Af is found to be of
the order of 7 % for local and global approaches, which is significantly higher than what
was observed above. The a priori analysis is run on the reference picture of Figure 15(a)
for values of o/A ranging from 1/64 to 1/8. By using the results of Figure 16, it
is concluded that the noise level associated with the SEM pictures is significantly
higher than for a conventional CCD or CMOS camera. This case is therefore interesting
to check whether the theoretical predictions survive when the noise level of pictures

becomes higher.

In Figure 17(a) the change of the standard uncertainty of the measured degrees
of freedom for the three approaches is shown. All the general trends observed in Fig-
ure 14(b) are also present in this difficult case. In particular, the global approaches
become even more interesting as they allow for a significant decrease of the uncer-

tainty level.

Figure 17(b) shows the change of the standard uncertainty of the average displace-
ment per ZOI (local approach) or element (global approach) as a function of ¢. For
very large ZOIs, the local approach out-performs the global approach. This may occur
since it was shown that the ratio o¢/0, is lower for a local approach (i.e., 1/4) com-

pared with a global approach (i.e., 0.36 at most for inner nodes). However, the trend
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is inverted for smaller values of ¢ for which the global approaches out-perform again
the local one.

Figure 17(c) shows the change of the standard uncertainty of the mean strain per
ZOI or element as a function of . In the present case, there is a clear benefit from the
global approach. Very early, the ratio of 2 between the global and local approaches is
reached. Because of the high noise level, there is an additional bonus in using global

approaches.

6 Summary

A comparison between local and global approaches to DIC was performed by using 4-
noded zones of interest (local approach) and 4-noded elements (global approach). The
same minimization procedure was used in both approaches so that algorithmic issues
are not the cause of differences. In both cases, the sum of squared differences was
minimized by using a modified Newton scheme. It was shown that the global approach
out-performs the local one thanks to the continuity requirements and the fact that
shape functions span over four elements for inner nodes. It is worth noting that the
results derived herein with Q4 shape functions can be generalized to 8-noded cubes
with trilinear shape functions [46] when performing Digital Volume Correlation [47].
General results concerning the resolution in terms of displacement and strains were
derived. Under simplifying assumptions, closed-form expressions were obtained. They
were checked against artificial and practical cases, and validated in all the examples
analyzed herein. In particular, a mesh adaption strategy was proposed to yield nodal
displacement uncertainties that are uniform for a global approach, irrespective of the
fact that nodes are located inside the region of interest, or on its edges or at corners.
The gain in terms of measurement resolution allows for finer meshes, namely, a
ratio of two of the element size compared with the ZOI size yields, as a first approxima-
tion, the same uncertainty level for the displacement and strain quantities investigated
herein. This result shows that more complex displacement fields can be captured by a

global approach when compared with a local approach. Furthermore, there is an ad-
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ditional bonus induced by the continuity constraint on the displacement field, though
less significant (i.e., of the order of 10 %) as compared with the previous effect. It
was shown that in case of very noisy images, this requirement made the displacement
measurements more robust with a global approach.

The next advantage of FE-based global approaches is their direct link with numer-
ical simulations. The measured displacement fields are very often used for comparison
purposes with numerical simulations. The latter ones are, for instance, used for iden-
tification and / or validation purposes of constitutive laws and numerical models. If
these issues are addressed, it is desirable to have the same kinematic basis whenever
possible. If it is not the case, the measured field can be interpolated by using the shape
functions of the underlying discretization, and not some exogenous interpolation that

was not used during the measurement stage.
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approaches. In the present case, 100 ZOIs are considered for the local approach (left), 100
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Fig. 3 Map of the eigenvalues in Fourier space.
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an interpolation by the inverse of square of the ZOI size.
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Fig. 9 Normalized standard strain uncertainty plog/cq as a function of o,. The solid line

shows the result of Equation (27).
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Fig. 10 Standard displacement uncertainty of the measured degrees of freedom (a), of the

mean displacement per ZOI (b), of the mean strain per element for a global and optimized

approach as functions of the same quantity for a local approach.
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Fig. 11 Biaxial testing machine (a) in DiffAbs line at SOLEIL synchrotron [44]. Reference
picture of a natural texture used in in situ experiments (b), and corresponding histogram (c).

The definition of the picture is equal to 256 kpixels with a 12-bit digitization.
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Fig. 12 Normalized RMS residual 77/Af as a function of the dimensionless noise level v/20 /A f
when o/Af =1/256,1/128,1/64,1/32. The solid line shows a linear interpolation with a slope

of 1. The shaded area depicts the variation of correlation residuals for the ten analyzed pictures.
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Fig. 13 Standard displacement uncertainty o, (a) and strain uncertainty oe (b) as functions

of the ZOI size ¢ for the ten analyzed pictures. The gray shaded areas show the predictions

based on the a priori resolution analysis.
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Fig. 14 Standard displacement uncertainty of the measured degrees of freedom (a), of the

mean displacement per ZOI or element (b), of the mean strain per ZOI or element as functions

of ZOI or element size ¢ for the three approaches used herein.
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Fig. 15 Reference SEM picture for which a grid was deposited (a), and corresponding his-

togram (b). The definition of the picture is equal to 563 kpixels with an 8-bit digitization.
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Fig. 16 Normalized RMS residual 7j/Af as a function of the dimensionless noise level v/20 /A f
when o/Af =1/64,1/32,1/16,1/8. The solid line shows a linear interpolation with a slope of
1.
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Fig. 17 Standard displacement uncertainty of the measured degrees of freedom (a), of the

mean displacement per ZOI or element (b), of the mean strain per ZOI or element as functions

of ZOI or element size ¢ for the three approaches used herein.



