Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
AC555
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Nathan Bernard
AC555
Commits
54fab5dc
Commit
54fab5dc
authored
11 months ago
by
Nathan
Browse files
Options
Downloads
Patches
Plain Diff
npc2
parent
620a97f1
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
npc2.py
+149
-0
149 additions, 0 deletions
npc2.py
with
149 additions
and
0 deletions
npc2.py
0 → 100644
+
149
−
0
View file @
54fab5dc
import
numpy
as
np
import
casadi
as
cas
import
time
,
math
import
matplotlib.pyplot
as
plt
# Double integrator dynamics system data
# State-space model: x+ = Ax + Bu ; y = Cx + Du
h
=
0.5
A
=
np
.
block
([[
np
.
eye
(
2
),
h
*
np
.
eye
(
2
)],
[
np
.
zeros
((
2
,
2
)),
np
.
eye
(
2
)]])
B
=
np
.
vstack
([
np
.
zeros
((
2
,
2
)),
h
*
np
.
eye
(
2
)])
C
=
np
.
hstack
([
np
.
eye
(
2
),
np
.
zeros
((
2
,
2
))])
D
=
np
.
zeros
((
2
,
2
))
# Model dimensions
dx
,
du
=
np
.
shape
(
B
)
dy
=
np
.
shape
(
C
)[
0
]
# Initial conditions
x0
=
np
.
array
([
0.5
,
1
,
0
,
0
])
u0
=
np
.
zeros
((
du
,
1
))
# Constraints
umin
=
-
0.25
umax
=
0.25
delta_umin
=
-
0.1
delta_umax
=
0.1
ymin
=
-
10
ymax
=
10
# Define control parameters
Q
=
np
.
block
([[
np
.
eye
(
2
),
np
.
zeros
((
2
,
2
))],
[
np
.
zeros
((
2
,
2
)),
1
*
np
.
eye
(
2
)]])
# cost for the state x
R
=
1
# cost for the input u
Qy
=
np
.
eye
(
dy
)
# cost for the output y
P
=
1
*
np
.
eye
(
dx
)
# terminal cost
# Number of predictions and simulations
Npred
=
5
Nsim
=
100
# Final point
# xref = = np.array([0.5, 0.5, 0, 0])
omega
=
2
*
math
.
pi
*
0.01
l
=
Nsim
+
1
+
Npred
xref_array
=
np
.
array
([[
math
.
sin
(
x
*
omega
)
for
x
in
range
(
l
)],
[
math
.
cos
(
x
*
omega
)
for
x
in
range
(
l
)],
[
0
for
x
in
range
(
l
)],
[
0
for
x
in
range
(
l
)]
])
# Optimization problem using CasADi
solver
=
cas
.
Opti
()
# create an Opti object
# Define variables
x
=
solver
.
variable
(
dx
,
Npred
+
1
)
u
=
solver
.
variable
(
du
,
Npred
)
xref
=
solver
.
parameter
(
dx
,
Npred
+
1
)
x_init
=
solver
.
parameter
(
dx
,
1
)
u_init
=
solver
.
parameter
(
du
,
1
)
# Initialize constraints
solver
.
subject_to
(
x
[:,
0
]
==
x_init
)
for
k
in
range
(
0
,
Npred
):
solver
.
subject_to
(
x
[:,
k
+
1
]
==
cas
.
mtimes
(
A
,
x
[:,
k
])
+
cas
.
mtimes
(
B
,
u
[:,
k
]))
# dynamics
solver
.
subject_to
(
umin
<=
u
[:,
k
])
# input magnitude constraints
solver
.
subject_to
(
u
[:,
k
]
<=
umax
)
solver
.
subject_to
(
ymin
<=
cas
.
mtimes
(
C
,
x
[:,
k
])
+
cas
.
mtimes
(
D
,
u
[:,
k
]))
# state magnitude constraints
solver
.
subject_to
(
cas
.
mtimes
(
C
,
x
[:,
k
])
+
cas
.
mtimes
(
D
,
u
[:,
k
])
<=
ymax
)
if
k
==
0
:
solver
.
subject_to
(
delta_umin
<=
u
[:,
k
]
-
u_init
)
solver
.
subject_to
(
u
[:,
k
]
-
u_init
<=
delta_umax
)
else
:
solver
.
subject_to
(
delta_umin
<=
u
[:,
k
]
-
u
[:,
k
-
1
])
solver
.
subject_to
(
u
[:,
k
]
-
u
[:,
k
-
1
]
<=
delta_umax
)
# Initialize objective
objective
=
0
for
k
in
range
(
0
,
Npred
):
objective
=
objective
+
cas
.
mtimes
(
cas
.
mtimes
(
cas
.
transpose
(
x
[:,
k
]
-
xref
[:,
k
]),
Q
),
x
[:,
k
]
-
xref
[:,
k
])
+
\
cas
.
mtimes
(
cas
.
mtimes
(
cas
.
transpose
(
u
[:,
k
]),
R
),
u
[:,
k
])
# quadratic cost function
objective
=
objective
+
cas
.
mtimes
(
cas
.
mtimes
(
cas
.
transpose
(
x
[:,
Npred
]
-
xref
[:,
Npred
]),
P
),
x
[:,
Npred
]
-
xref
[:,
Npred
])
solver
.
minimize
(
objective
)
# Define the solver
options
=
{
'
ipopt
'
:
{
'
print_level
'
:
0
,
'
sb
'
:
'
yes
'
},
'
print_time
'
:
0
}
solver
.
solver
(
'
ipopt
'
,
options
)
# Simulation loop
usim
=
np
.
zeros
((
du
,
Nsim
))
ysim
=
np
.
zeros
((
dy
,
Nsim
))
xsim
=
np
.
zeros
((
dx
,
Nsim
+
1
))
xsim
[:,
0
]
=
x0
usim_init
=
u0
timer_start
=
time
.
time
()
for
i
in
range
(
Nsim
):
solver
.
set_value
(
x_init
,
xsim
[:,
i
])
solver
.
set_value
(
u_init
,
usim_init
)
solver
.
set_value
(
xref
,
xref_array
[:,
i
:
i
+
Npred
+
1
])
sol
=
solver
.
solve
()
u_sol
=
sol
.
value
(
u
)
usim_init
=
u_sol
[:,
0
]
usim
[:,
i
]
=
u_sol
[:,
0
]
xsim
[:,
i
+
1
]
=
A
@
xsim
[:,
i
]
+
B
@
usim
[:,
i
]
# update the dynamics
ysim
[:,
i
]
=
C
@
xsim
[:,
i
]
+
D
@
usim
[:,
i
]
# update the output
timer_end
=
time
.
time
()
time_elapsed
=
timer_end
-
timer_start
print
(
f
'
Total time:
{
time_elapsed
}
(s)
'
)
# Plot the results
plt
.
figure
()
plt
.
stem
(
ysim
[
0
,
:],
label
=
'
y1
'
)
plt
.
stem
(
ysim
[
1
,
:],
label
=
'
y2
'
,
linefmt
=
'
r-
'
,
markerfmt
=
'
ro
'
)
plt
.
title
(
'
Output y
'
)
plt
.
grid
()
plt
.
legend
()
plt
.
show
()
plt
.
figure
()
plt
.
scatter
(
xsim
[
0
,
:],
xsim
[
1
,
:],
edgecolors
=
'
red
'
,
facecolors
=
'
none
'
)
plt
.
title
(
'
State space
'
)
plt
.
grid
()
plt
.
xlabel
(
'
x1
'
)
plt
.
ylabel
(
'
x2
'
)
plt
.
show
()
plt
.
figure
()
plt
.
stem
(
usim
[
0
,
:],
label
=
'
u1
'
)
plt
.
stem
(
usim
[
1
,
:],
label
=
'
u2
'
,
linefmt
=
'
r-
'
,
markerfmt
=
'
ro
'
)
plt
.
title
(
'
Input u
'
)
plt
.
grid
()
plt
.
legend
()
plt
.
show
()
# Analyze the results
error
=
np
.
sqrt
(
np
.
sum
(
xsim
**
2
,
axis
=
0
))
avg_error
=
np
.
mean
(
error
)
print
(
f
'
Average error:
{
avg_error
}
'
)
avg_u
=
np
.
mean
(
np
.
abs
(
usim
),
axis
=
1
)
print
(
f
'
Average input:
{
avg_u
}
'
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
sign in
to comment